Classification of battery compounds using structure-free Mendeleev encodings

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zixin Zhuang, Amanda S. Barnard
{"title":"Classification of battery compounds using structure-free Mendeleev encodings","authors":"Zixin Zhuang,&nbsp;Amanda S. Barnard","doi":"10.1186/s13321-024-00836-x","DOIUrl":null,"url":null,"abstract":"<p>Machine learning is a valuable tool that can accelerate the discovery and design of materials occupying combinatorial chemical spaces. However, the prerequisite need for vast amounts of training data can be prohibitive when significant resources are needed to characterize or simulate candidate structures. Recent results have shown that structure-free encoding of complex materials, based entirely on chemical compositions, can overcome this impediment and perform well in unsupervised learning tasks. In this study, we extend this exploration to supervised classification, and show how structure-free encoding can accurately predict classes of material compounds for battery applications without time consuming measurement of bonding networks, lattices or densities.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00836-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00836-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning is a valuable tool that can accelerate the discovery and design of materials occupying combinatorial chemical spaces. However, the prerequisite need for vast amounts of training data can be prohibitive when significant resources are needed to characterize or simulate candidate structures. Recent results have shown that structure-free encoding of complex materials, based entirely on chemical compositions, can overcome this impediment and perform well in unsupervised learning tasks. In this study, we extend this exploration to supervised classification, and show how structure-free encoding can accurately predict classes of material compounds for battery applications without time consuming measurement of bonding networks, lattices or densities.

使用无结构门捷列夫编码对电池化合物进行分类
机器学习是一种有价值的工具,可以加速发现和设计占据组合化学空间的材料。然而,当需要大量资源来表征或模拟候选结构时,对大量训练数据的前提需求可能会令人望而却步。最近的研究结果表明,完全基于化学成分的复杂材料无结构编码可以克服这一障碍,并在无监督学习任务中表现出色。在本研究中,我们将这一探索扩展到监督分类,并展示了无结构编码如何在不耗费时间测量键合网络、晶格或密度的情况下,准确预测电池应用的材料化合物类别。在分类任务(包括二元和多类分离)中,对复杂材料的无结构编码进行了全面评估,包括基于不同逻辑函数的三个分类器,并测量了四个指标和学习曲线。编码应用于来自计算和实验的两个数据集,并使用 5 种方法对结果进行可视化,以证实门捷列夫编码的适用性和优越性。这些方法具有通用性,可通过源软件访问,提供简单、直观和可解释的材料信息学成果,以加速材料设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信