{"title":"Classification of battery compounds using structure-free Mendeleev encodings","authors":"Zixin Zhuang, Amanda S. Barnard","doi":"10.1186/s13321-024-00836-x","DOIUrl":null,"url":null,"abstract":"<p>Machine learning is a valuable tool that can accelerate the discovery and design of materials occupying combinatorial chemical spaces. However, the prerequisite need for vast amounts of training data can be prohibitive when significant resources are needed to characterize or simulate candidate structures. Recent results have shown that structure-free encoding of complex materials, based entirely on chemical compositions, can overcome this impediment and perform well in unsupervised learning tasks. In this study, we extend this exploration to supervised classification, and show how structure-free encoding can accurately predict classes of material compounds for battery applications without time consuming measurement of bonding networks, lattices or densities.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00836-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00836-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning is a valuable tool that can accelerate the discovery and design of materials occupying combinatorial chemical spaces. However, the prerequisite need for vast amounts of training data can be prohibitive when significant resources are needed to characterize or simulate candidate structures. Recent results have shown that structure-free encoding of complex materials, based entirely on chemical compositions, can overcome this impediment and perform well in unsupervised learning tasks. In this study, we extend this exploration to supervised classification, and show how structure-free encoding can accurately predict classes of material compounds for battery applications without time consuming measurement of bonding networks, lattices or densities.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.