Granular computing in zero-divisor graphs of Zn

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Hibba Arshad , Imran Javaid , Asfand Fahad
{"title":"Granular computing in zero-divisor graphs of Zn","authors":"Hibba Arshad ,&nbsp;Imran Javaid ,&nbsp;Asfand Fahad","doi":"10.1016/j.kjs.2024.100231","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study the zero-divisor graphs <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> of rings of integers modulo <span><math><mi>n</mi></math></span> as information systems <span><math><mrow><mi>I</mi><mrow><mo>(</mo><mi>Γ</mi><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> using equivalence classes and rough sets. Equivalence classes are referred as granules and partitions are referred as indiscernible partitions. We define an indiscernibility relation on the vertex set and identify different sets of attributes that induce the same indiscernibility partition. A reduct is a minimal subset of attributes which yields the same partition as the original attribute set. We compute all reducts of the defined information system and classify them in to two types including: (i) the set <span><math><mi>P</mi></math></span> of all prime divisors of <span><math><mi>n</mi></math></span> and (ii) the set consisting of <span><math><mrow><mi>P</mi><mo>∖</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span>, prime powers of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in the prime factorization of <span><math><mi>n</mi></math></span> and the elements of the form <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>p</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>P</mi><mo>∖</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span>. Moreover, we give the structures and the cardinalities of the attribute subsets whose removal yields a different indiscernibility partition than that of the set of all attributes, referred as essential sets. We prove that the essential sets of <span><math><mrow><mi>I</mi><mrow><mo>(</mo><mi>Γ</mi><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> either consist of two prime divisors of <span><math><mi>n</mi></math></span> or one prime divisor <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> combined with prime powers of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Further, we determine the lower and upper approximations of various vertex subsets to study the properties of the zero-divisor graphs. We also study properties of the rough membership function for <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. Furthermore, we introduce the class-based discernibility matrix induced by indiscernibility classes of zero divisors and determine general form of its entries. We also prove that the minimal entries of the class-based discernibility matrix coincide with the essential sets of <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. Based on these results, we determine information-granularity measures corresponding to the notable partitions of <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and provide an example to establish consistency of the proved results with these well-known measures. Thus, starting from introducing an information system, we investigate the components of granular computing and utilize our findings to compute information granularity measures, contributing to a deeper understanding of the zero divisor graphs via rough set theory.</p></div>","PeriodicalId":17848,"journal":{"name":"Kuwait Journal of Science","volume":"51 3","pages":"Article 100231"},"PeriodicalIF":1.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2307410824000567/pdfft?md5=48f0acc4d0b15064b369a7b947404ec3&pid=1-s2.0-S2307410824000567-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307410824000567","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the zero-divisor graphs Γ(Zn) of rings of integers modulo n as information systems I(Γ(Zn)) using equivalence classes and rough sets. Equivalence classes are referred as granules and partitions are referred as indiscernible partitions. We define an indiscernibility relation on the vertex set and identify different sets of attributes that induce the same indiscernibility partition. A reduct is a minimal subset of attributes which yields the same partition as the original attribute set. We compute all reducts of the defined information system and classify them in to two types including: (i) the set P of all prime divisors of n and (ii) the set consisting of Ppi, prime powers of pi in the prime factorization of n and the elements of the form pipj, where pjPpi. Moreover, we give the structures and the cardinalities of the attribute subsets whose removal yields a different indiscernibility partition than that of the set of all attributes, referred as essential sets. We prove that the essential sets of I(Γ(Zn)) either consist of two prime divisors of n or one prime divisor pi combined with prime powers of pi. Further, we determine the lower and upper approximations of various vertex subsets to study the properties of the zero-divisor graphs. We also study properties of the rough membership function for Γ(Zn). Furthermore, we introduce the class-based discernibility matrix induced by indiscernibility classes of zero divisors and determine general form of its entries. We also prove that the minimal entries of the class-based discernibility matrix coincide with the essential sets of Γ(Zn). Based on these results, we determine information-granularity measures corresponding to the notable partitions of Γ(Zn) and provide an example to establish consistency of the proved results with these well-known measures. Thus, starting from introducing an information system, we investigate the components of granular computing and utilize our findings to compute information granularity measures, contributing to a deeper understanding of the zero divisor graphs via rough set theory.

Zn 零因子图中的粒度计算
在本文中,我们使用等价类和粗糙集研究作为信息系统 I(Γ(Zn)) 的 n 模整数环的零分图 Γ(Zn)。等价类被称为粒,分区被称为不可辨别分区。我们定义顶点集上的不可辨别性关系,并确定引起相同不可辨别性分区的不同属性集。还原是一个最小的属性子集,它能产生与原始属性集相同的分区。我们计算了所定义信息系统的所有还原,并将其分为两类,包括:(i) n 的所有素除数集 P;(ii) 由 P∖pi、n 的素因数分解中 pi 的素幂和形式为 pipj 的元素(其中 pj∈P∖pi )组成的集合。此外,我们还给出了属性子集的结构和心数,这些子集去除后会得到与所有属性集不同的不可分性分区,即基本集。我们证明了 I(Γ(Zn))的基本集要么由 n 的两个素除数组成,要么由一个素除数 pi 与 pi 的素幂组合而成。此外,我们还确定了各种顶点子集的下近似值和上近似值,以研究零除数图的性质。我们还研究了 Γ(Zn) 的粗略成员函数的性质。此外,我们还引入了由零除数的不可辨别性类所诱导的基于类的可辨别性矩阵,并确定了其条目的一般形式。我们还证明了基于类的可辨别矩阵的最小项与Γ(Zn) 的基本集重合。基于这些结果,我们确定了与Γ(Zn) 的显著分区相对应的信息粒度度量,并举例说明了所证明的结果与这些著名度量的一致性。因此,我们从引入信息系统开始,研究了粒度计算的组成部分,并利用我们的发现计算了信息粒度度量,有助于通过粗糙集理论加深对零除数图的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Kuwait Journal of Science
Kuwait Journal of Science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
28.60%
发文量
132
期刊介绍: Kuwait Journal of Science (KJS) is indexed and abstracted by major publishing houses such as Chemical Abstract, Science Citation Index, Current contents, Mathematics Abstract, Micribiological Abstracts etc. KJS publishes peer-review articles in various fields of Science including Mathematics, Computer Science, Physics, Statistics, Biology, Chemistry and Earth & Environmental Sciences. In addition, it also aims to bring the results of scientific research carried out under a variety of intellectual traditions and organizations to the attention of specialized scholarly readership. As such, the publisher expects the submission of original manuscripts which contain analysis and solutions about important theoretical, empirical and normative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信