{"title":"Learning symmetry-aware atom mapping in chemical reactions through deep graph matching","authors":"Maryam Astero, Juho Rousu","doi":"10.1186/s13321-024-00841-0","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate atom mapping, which establishes correspondences between atoms in reactants and products, is a crucial step in analyzing chemical reactions. In this paper, we present a novel end-to-end approach that formulates the atom mapping problem as a deep graph matching task. Our proposed model, AMNet (Atom Matching Network), utilizes molecular graph representations and employs various atom and bond features using graph neural networks to capture the intricate structural characteristics of molecules, ensuring precise atom correspondence predictions. Notably, AMNet incorporates the consideration of molecule symmetry, enhancing accuracy while simultaneously reducing computational complexity. The integration of the Weisfeiler-Lehman isomorphism test for symmetry identification refines the model’s predictions. Furthermore, our model maps the entire atom set in a chemical reaction, offering a comprehensive approach beyond focusing solely on the main molecules in reactions. We evaluated AMNet’s performance on a subset of USPTO reaction datasets, addressing various tasks, including assessing the impact of molecular symmetry identification, understanding the influence of feature selection on AMNet performance, and comparing its performance with the state-of-the-art method. The result reveals an average accuracy of 97.3% on mapped atoms, with 99.7% of reactions correctly mapped when the correct mapped atom is within the top 10 predicted atoms.</p><p><b>Scientific contribution</b></p><p>The paper introduces a novel end-to-end deep graph matching model for atom mapping, utilizing molecular graph representations to capture structural characteristics effectively. It enhances accuracy by integrating symmetry detection through the Weisfeiler-Lehman test, reducing the number of possible mappings and improving efficiency. Unlike previous methods, it maps the entire reaction, not just main components, providing a comprehensive view. Additionally, by integrating efficient graph matching techniques, it reduces computational complexity, making atom mapping more feasible.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00841-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00841-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate atom mapping, which establishes correspondences between atoms in reactants and products, is a crucial step in analyzing chemical reactions. In this paper, we present a novel end-to-end approach that formulates the atom mapping problem as a deep graph matching task. Our proposed model, AMNet (Atom Matching Network), utilizes molecular graph representations and employs various atom and bond features using graph neural networks to capture the intricate structural characteristics of molecules, ensuring precise atom correspondence predictions. Notably, AMNet incorporates the consideration of molecule symmetry, enhancing accuracy while simultaneously reducing computational complexity. The integration of the Weisfeiler-Lehman isomorphism test for symmetry identification refines the model’s predictions. Furthermore, our model maps the entire atom set in a chemical reaction, offering a comprehensive approach beyond focusing solely on the main molecules in reactions. We evaluated AMNet’s performance on a subset of USPTO reaction datasets, addressing various tasks, including assessing the impact of molecular symmetry identification, understanding the influence of feature selection on AMNet performance, and comparing its performance with the state-of-the-art method. The result reveals an average accuracy of 97.3% on mapped atoms, with 99.7% of reactions correctly mapped when the correct mapped atom is within the top 10 predicted atoms.
Scientific contribution
The paper introduces a novel end-to-end deep graph matching model for atom mapping, utilizing molecular graph representations to capture structural characteristics effectively. It enhances accuracy by integrating symmetry detection through the Weisfeiler-Lehman test, reducing the number of possible mappings and improving efficiency. Unlike previous methods, it maps the entire reaction, not just main components, providing a comprehensive view. Additionally, by integrating efficient graph matching techniques, it reduces computational complexity, making atom mapping more feasible.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.