Elizabeth Wootton, Mathis Grossmann, Annabelle M. Warren
{"title":"Dysnatremia in a changing climate: A global systematic review of the association between serum sodium and ambient temperature","authors":"Elizabeth Wootton, Mathis Grossmann, Annabelle M. Warren","doi":"10.1111/cen.15052","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>Both hyponatremia and hypernatremia have been reported to occur more frequently with higher ambient temperatures, although the underlying mechanisms are not well understood. Global temperatures are rising due to climate change, which may impact the incidence of dysnatremia worldwide. We aimed to identify, collate and critically appraise studies analyzing the relationship between climate measures (outdoor temperature, humidity) and serum sodium concentrations.</p>\n </section>\n \n <section>\n \n <h3> Design</h3>\n \n <p>Systematic review, reported in accordance with PRISMA guidelines.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>MEDLINE and Embase were searched with relevant key terms. Studies assessing the effect on serum sodium measurement of elevated temperature or humidity versus a comparator were included.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Of 1466 potentially relevant studies, 34 met inclusion criteria, originating from 23 countries spanning all inhabited continents. The majority (30 of 34, 88%) reported a significant association between outdoor temperature and dysnatremia, predominantly lower serum sodium with increased ambient temperature. Humidity had a less consistent effect. Individuals aged above 65 years, children, those taking diuretics and antidepressants, those with chronic renal impairment or those undertaking physical exertion had increased vulnerability to heat-associated dysnatremia. The risk of bias was assessed to be high in all but four studies.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Higher ambient temperature is consistently associated with an increased incidence of hyponatremia. We infer that hyponatremia presentations are likely to rise with increasing global temperatures and the frequency of extreme heat events secondary to climate change. Evidence-based public health messages, clinician education and reduction in fossil fuel consumption are necessary to reduce the expected burden on healthcare services worldwide.</p>\n </section>\n </div>","PeriodicalId":10346,"journal":{"name":"Clinical Endocrinology","volume":"100 6","pages":"527-541"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cen.15052","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cen.15052","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Both hyponatremia and hypernatremia have been reported to occur more frequently with higher ambient temperatures, although the underlying mechanisms are not well understood. Global temperatures are rising due to climate change, which may impact the incidence of dysnatremia worldwide. We aimed to identify, collate and critically appraise studies analyzing the relationship between climate measures (outdoor temperature, humidity) and serum sodium concentrations.
Design
Systematic review, reported in accordance with PRISMA guidelines.
Methods
MEDLINE and Embase were searched with relevant key terms. Studies assessing the effect on serum sodium measurement of elevated temperature or humidity versus a comparator were included.
Results
Of 1466 potentially relevant studies, 34 met inclusion criteria, originating from 23 countries spanning all inhabited continents. The majority (30 of 34, 88%) reported a significant association between outdoor temperature and dysnatremia, predominantly lower serum sodium with increased ambient temperature. Humidity had a less consistent effect. Individuals aged above 65 years, children, those taking diuretics and antidepressants, those with chronic renal impairment or those undertaking physical exertion had increased vulnerability to heat-associated dysnatremia. The risk of bias was assessed to be high in all but four studies.
Conclusions
Higher ambient temperature is consistently associated with an increased incidence of hyponatremia. We infer that hyponatremia presentations are likely to rise with increasing global temperatures and the frequency of extreme heat events secondary to climate change. Evidence-based public health messages, clinician education and reduction in fossil fuel consumption are necessary to reduce the expected burden on healthcare services worldwide.
期刊介绍:
Clinical Endocrinology publishes papers and reviews which focus on the clinical aspects of endocrinology, including the clinical application of molecular endocrinology. It does not publish papers relating directly to diabetes care and clinical management. It features reviews, original papers, commentaries, correspondence and Clinical Questions. Clinical Endocrinology is essential reading not only for those engaged in endocrinological research but also for those involved primarily in clinical practice.