Integrated nanozyme electrochemical sensor for the detection of tannic acid: An advanced approach to rapid and efficient environmental monitoring

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Livia Alexandra Dinu , Angela Mihaela Baracu , Elisabeta-Irina Geana , Catalin Parvulescu , Marius C. Stoian , Oana Brincoveanu , Cristina Pachiu , Sevinc Kurbanoglu
{"title":"Integrated nanozyme electrochemical sensor for the detection of tannic acid: An advanced approach to rapid and efficient environmental monitoring","authors":"Livia Alexandra Dinu ,&nbsp;Angela Mihaela Baracu ,&nbsp;Elisabeta-Irina Geana ,&nbsp;Catalin Parvulescu ,&nbsp;Marius C. Stoian ,&nbsp;Oana Brincoveanu ,&nbsp;Cristina Pachiu ,&nbsp;Sevinc Kurbanoglu","doi":"10.1016/j.apsadv.2024.100602","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel methodology for the rapid on-site detection of tannic acid (TA), a prevalent organic contaminant in various natural environments, notably in plant-derived sources. The proposed approach involves the development of a compact integrated electrochemical sensor incorporating a nanozyme system. Specifically, this system comprises Fe<sub>2</sub>O<sub>3</sub> nanoparticles (NPs) embedded within a chitosan (CS) matrix, immobilized onto a sulfur-doped graphene (S-Gr) substrate deposited on a gold electrode (AuE). The Fe<sub>2</sub>O<sub>3</sub>NPs exhibit peroxidase-like artificial enzyme activity, contributing to exceptional stability and catalytic efficiency in TA oxidation processes. Additionally, the CS matrix acts as a stabilizing agent, enhancing the performance and recyclability of the nanozyme. Furthermore, the S-Gr nanomaterial facilitates rapid electron transfer, leading to heightened sensitivity and prompt response times. The integration of these advanced nanomaterials with a microfabricated electrode presents an economically feasible, reliable, and effective solution for TA detection, with promising prospects for large-scale deployment and environmental monitoring. The Fe<sub>2</sub>O<sub>3<img></sub>CS-S-Gr/AuE sensing system demonstrates a calculated limit of detection (LOD) of 3.6 × 10<sup>−3</sup> µM and an increased sensitivity of 0.2 µA×µM<sup>−1</sup>, with a wide linear concentration range spanning from 0.01 to 1000 µM for TA detection. Notably, the recovery values obtained for surface water samples fall within the range of 97.7 % to 99.5 %, indicating strong agreement with results derived from the standard method, UHPLC-MS/MS.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"21 ","pages":"Article 100602"},"PeriodicalIF":7.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000308/pdfft?md5=e1b51142b42697c452fb5b9b1befd935&pid=1-s2.0-S2666523924000308-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924000308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel methodology for the rapid on-site detection of tannic acid (TA), a prevalent organic contaminant in various natural environments, notably in plant-derived sources. The proposed approach involves the development of a compact integrated electrochemical sensor incorporating a nanozyme system. Specifically, this system comprises Fe2O3 nanoparticles (NPs) embedded within a chitosan (CS) matrix, immobilized onto a sulfur-doped graphene (S-Gr) substrate deposited on a gold electrode (AuE). The Fe2O3NPs exhibit peroxidase-like artificial enzyme activity, contributing to exceptional stability and catalytic efficiency in TA oxidation processes. Additionally, the CS matrix acts as a stabilizing agent, enhancing the performance and recyclability of the nanozyme. Furthermore, the S-Gr nanomaterial facilitates rapid electron transfer, leading to heightened sensitivity and prompt response times. The integration of these advanced nanomaterials with a microfabricated electrode presents an economically feasible, reliable, and effective solution for TA detection, with promising prospects for large-scale deployment and environmental monitoring. The Fe2O3CS-S-Gr/AuE sensing system demonstrates a calculated limit of detection (LOD) of 3.6 × 10−3 µM and an increased sensitivity of 0.2 µA×µM−1, with a wide linear concentration range spanning from 0.01 to 1000 µM for TA detection. Notably, the recovery values obtained for surface water samples fall within the range of 97.7 % to 99.5 %, indicating strong agreement with results derived from the standard method, UHPLC-MS/MS.

用于检测单宁酸的集成纳米酶电化学传感器:快速高效环境监测的先进方法
本研究提出了一种现场快速检测单宁酸(TA)的新方法,单宁酸是各种自然环境,特别是植物源中普遍存在的一种有机污染物。所提出的方法包括开发一种集成了纳米酶系统的紧凑型电化学传感器。具体来说,该系统由嵌入壳聚糖(CS)基质的 Fe2O3 纳米粒子(NPs)组成,固定在沉积在金电极(AuE)上的掺硫石墨烯(S-Gr)基质上。Fe2O3NPs 具有类似过氧化物酶的人工酶活性,在 TA 氧化过程中具有优异的稳定性和催化效率。此外,CS 基质作为一种稳定剂,提高了纳米酶的性能和可回收性。此外,S-Gr 纳米材料还能促进电子快速转移,从而提高灵敏度并缩短反应时间。将这些先进的纳米材料与微加工电极相结合,为 TA 检测提供了一种经济可行、可靠有效的解决方案,具有大规模部署和环境监测的广阔前景。Fe2O3CS-S-Gr/AuE 传感系统的计算检出限(LOD)为 3.6 × 10-3 µM,灵敏度提高到 0.2 µA×µM-1,TA 检测的线性浓度范围很宽,从 0.01 µM 到 1000 µM。值得注意的是,地表水样品的回收率在 97.7 % 到 99.5 % 之间,这表明该方法与标准方法 UHPLC-MS/MS 得出的结果非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信