{"title":"Thermal-hydraulic performance of turbulent flows across a heated round tube installed through several perforated twisted tapes","authors":"Shiang-Wuu Perng, Horng Wen Wu, De-An Huang","doi":"10.1108/hff-09-2023-0576","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The novel design of this study is accomplished by inserting several twisted tapes and drilling some circular perforations near the tape edge (C1, C3, C5: solid tapes; C2, C4, C6: perforated tapes). The turbulence flow appearances and thermal convective features are examined for various Reynolds numbers (8,000–14,000) using the renormalization group (RNG) <span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mi>κ</mml:mi><mml:mo>−</mml:mo><mml:mi>ε</mml:mi></mml:mrow></mml:math></span> turbulent model and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The simulated outcomes reveal that inserting more perforated-twisted tapes into the heated round tube promotes turbulent thermal convection effectively. A swirling flow caused by the twisted tapes to produce the secondary flow jets between two reverse-spin tapes can combine with the main flow passing through the perforations at the outer edge to enhance the vortex flow. The primary factors are the quantity of twisted tapes and with/without perforations, as the perforation ratio remains at 2.5 in this numerical work. Weighing friction along the tube, C6 (four reverse-spin perforated-twisted tapes) brings the uppermost thermal-hydraulic performance of 1.23 under Re = 8,000.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p>The constant thermo-hydraulic attributes of liquid water and the steady Newtonian fluid are research limitations for this simulated work.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>The simulated outcomes will avail the inner-pipe design of a heat exchanger inserted by multiple perforated twisted tapes to enhance superior heat transfer.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>These twisted tapes form tiny circular perforations along the tape edge to introduce the fluid flow through these bores and combine with the secondary flow induced between two reverse-spin tapes. This scheme enhances the swirling flow, turbulence intensity and fluid mixing to advance thermal convection since larger perforations cannot produce large jet velocity or the position of perforations is too far from the tape edge to generate a separated flow. Consequently, this work contributes a valuable cooling mechanism toward thermal engineering.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"1 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-09-2023-0576","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.
Design/methodology/approach
The novel design of this study is accomplished by inserting several twisted tapes and drilling some circular perforations near the tape edge (C1, C3, C5: solid tapes; C2, C4, C6: perforated tapes). The turbulence flow appearances and thermal convective features are examined for various Reynolds numbers (8,000–14,000) using the renormalization group (RNG) κ−ε turbulent model and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm.
Findings
The simulated outcomes reveal that inserting more perforated-twisted tapes into the heated round tube promotes turbulent thermal convection effectively. A swirling flow caused by the twisted tapes to produce the secondary flow jets between two reverse-spin tapes can combine with the main flow passing through the perforations at the outer edge to enhance the vortex flow. The primary factors are the quantity of twisted tapes and with/without perforations, as the perforation ratio remains at 2.5 in this numerical work. Weighing friction along the tube, C6 (four reverse-spin perforated-twisted tapes) brings the uppermost thermal-hydraulic performance of 1.23 under Re = 8,000.
Research limitations/implications
The constant thermo-hydraulic attributes of liquid water and the steady Newtonian fluid are research limitations for this simulated work.
Practical implications
The simulated outcomes will avail the inner-pipe design of a heat exchanger inserted by multiple perforated twisted tapes to enhance superior heat transfer.
Originality/value
These twisted tapes form tiny circular perforations along the tape edge to introduce the fluid flow through these bores and combine with the secondary flow induced between two reverse-spin tapes. This scheme enhances the swirling flow, turbulence intensity and fluid mixing to advance thermal convection since larger perforations cannot produce large jet velocity or the position of perforations is too far from the tape edge to generate a separated flow. Consequently, this work contributes a valuable cooling mechanism toward thermal engineering.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf