A Prognostic Framework for Post-Operative Patient Survival Prediction in IoMT

Shubhanshi Mittal, Saifur Rahman, Shantanu Pal, Chandan K. Karmakar
{"title":"A Prognostic Framework for Post-Operative Patient Survival Prediction in IoMT","authors":"Shubhanshi Mittal, Saifur Rahman, Shantanu Pal, Chandan K. Karmakar","doi":"10.1109/COMSNETS59351.2024.10426969","DOIUrl":null,"url":null,"abstract":"The study presents an Internet of Medical Things (IoMT) framework designed to predict patient survival outcomes through the evaluation of a post-thoracic surgery scenario. We employ a multi-layered IoMT framework that integrates various sensors and medical devices for real-time data collection, efficient data transmission, and data analysis. Utilizing a set of eight traditional and ensemble machine learning classifiers, along with neural networks optimized using grid search, we establish a baseline performance for the framework's capability in predicting post-surgical survival rates. However, as individual machine learning classifiers exhibit suboptimal performance across the performance metrics used, we combine the individual strengths of these classifiers to construct a stacking approach. The stacked classifier which incorporates a multi-layer perceptron as the final estimator achieved significant results, including a high accuracy of 0.90, precision of 0.87, and recall of 0.93. These metrics not only indicate a high post-operative survival detection rate but also demonstrate a balance of low bias and high variance performance, ensuring that the model is both accurate and reliable in varying IoMT scenarios.","PeriodicalId":518748,"journal":{"name":"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)","volume":"44 2","pages":"415-417"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS59351.2024.10426969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study presents an Internet of Medical Things (IoMT) framework designed to predict patient survival outcomes through the evaluation of a post-thoracic surgery scenario. We employ a multi-layered IoMT framework that integrates various sensors and medical devices for real-time data collection, efficient data transmission, and data analysis. Utilizing a set of eight traditional and ensemble machine learning classifiers, along with neural networks optimized using grid search, we establish a baseline performance for the framework's capability in predicting post-surgical survival rates. However, as individual machine learning classifiers exhibit suboptimal performance across the performance metrics used, we combine the individual strengths of these classifiers to construct a stacking approach. The stacked classifier which incorporates a multi-layer perceptron as the final estimator achieved significant results, including a high accuracy of 0.90, precision of 0.87, and recall of 0.93. These metrics not only indicate a high post-operative survival detection rate but also demonstrate a balance of low bias and high variance performance, ensuring that the model is both accurate and reliable in varying IoMT scenarios.
用于预测 IoMT 术后患者存活率的预后框架
本研究提出了一个医疗物联网(IoMT)框架,旨在通过评估胸外科手术后的情况来预测患者的生存结果。我们采用了一个多层 IoMT 框架,该框架集成了各种传感器和医疗设备,用于实时数据收集、高效数据传输和数据分析。利用一组八个传统和集合机器学习分类器,以及使用网格搜索优化的神经网络,我们为该框架预测手术后存活率的能力建立了基准性能。然而,由于单个机器学习分类器在所使用的性能指标方面表现不佳,我们将这些分类器的各自优势结合起来,构建了一种堆叠方法。将多层感知器作为最终估计器的堆叠分类器取得了显著的效果,包括 0.90 的高准确率、0.87 的高精确率和 0.93 的高召回率。这些指标不仅显示了较高的术后存活检测率,还显示了低偏差和高方差性能之间的平衡,确保该模型在不同的 IoMT 情景下既准确又可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信