Advancing Relative Permeability and Capillary Pressure Estimation in Porous Media through Physics-Informed Machine Learning and Reinforcement Learning Techniques

Ramanzani Kalule, H. Abderrahmane, S. Ahmed, A. M. Hassan, W. Alameri
{"title":"Advancing Relative Permeability and Capillary Pressure Estimation in Porous Media through Physics-Informed Machine Learning and Reinforcement Learning Techniques","authors":"Ramanzani Kalule, H. Abderrahmane, S. Ahmed, A. M. Hassan, W. Alameri","doi":"10.2523/iptc-23572-ms","DOIUrl":null,"url":null,"abstract":"\n Recent advances in machine learning have opened new possibilities for accurately solving and understanding complex physical phenomena by combining governing equations with data-driven models. Considering these advancements, this study aims to leverage the potential of a physics-informed machine learning, complemented by reinforcement learning, to estimate relative permeability and capillary pressure functions from unsteady-state core-flooding (waterflooding) data. The study covers the solution of an inverse problem using reinforcement learning, aiming to estimate LET model parameters governing the evolution of relative permeability to achieve the best fit with experimental data through a forward problem solution. In the forward problem, the estimated parameters are utilized to determine the water saturation and the trend of capillary pressure. The estimated curves portray the relationship between relative permeability values and saturation, demonstrating their asymptotic progression towards residual and maximum saturation points. Additionally, the estimated capillary pressure trend aligns with the existing literature, validating the accuracy of our approach. The study shows that the proposed approach offers a promising method for estimating petrophysical properties and provides valuable insights into fluid flow behaviour within a porous media.","PeriodicalId":518539,"journal":{"name":"Day 3 Wed, February 14, 2024","volume":"401 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, February 14, 2024","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-23572-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in machine learning have opened new possibilities for accurately solving and understanding complex physical phenomena by combining governing equations with data-driven models. Considering these advancements, this study aims to leverage the potential of a physics-informed machine learning, complemented by reinforcement learning, to estimate relative permeability and capillary pressure functions from unsteady-state core-flooding (waterflooding) data. The study covers the solution of an inverse problem using reinforcement learning, aiming to estimate LET model parameters governing the evolution of relative permeability to achieve the best fit with experimental data through a forward problem solution. In the forward problem, the estimated parameters are utilized to determine the water saturation and the trend of capillary pressure. The estimated curves portray the relationship between relative permeability values and saturation, demonstrating their asymptotic progression towards residual and maximum saturation points. Additionally, the estimated capillary pressure trend aligns with the existing literature, validating the accuracy of our approach. The study shows that the proposed approach offers a promising method for estimating petrophysical properties and provides valuable insights into fluid flow behaviour within a porous media.
通过物理信息机器学习和强化学习技术推进多孔介质中的相对渗透率和毛细管压力估算
机器学习的最新进展为通过将控制方程与数据驱动模型相结合来准确解决和理解复杂物理现象提供了新的可能性。考虑到这些进步,本研究旨在利用物理信息机器学习的潜力,辅以强化学习,从非稳态岩心充水(注水)数据中估算相对渗透率和毛细管压力函数。该研究包括利用强化学习解决反问题,目的是通过正向问题的解决来估计控制相对渗透率演化的 LET 模型参数,以实现与实验数据的最佳拟合。在正向问题中,利用估计参数确定水饱和度和毛细管压力的变化趋势。估算出的曲线描绘了相对渗透率值与饱和度之间的关系,显示了它们向残余饱和度点和最大饱和度点的渐进过程。此外,估算的毛细管压力趋势与现有文献一致,验证了我们方法的准确性。研究表明,所提出的方法为估算岩石物理特性提供了一种有前途的方法,并为了解多孔介质中的流体流动行为提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信