Simplified Power-Law Model for the Material Balance of Gas Reservoirs Experiencing Water Influx

N. Hosseinpour-Zonoozi, T. A. Blasingame
{"title":"Simplified Power-Law Model for the Material Balance of Gas Reservoirs Experiencing Water Influx","authors":"N. Hosseinpour-Zonoozi, T. A. Blasingame","doi":"10.2523/iptc-24407-ms","DOIUrl":null,"url":null,"abstract":"\n A simple power-law model is presented for performance of gas reservoirs experiencing water influx using only cumulative production, reservoir pressure, and the gas deviation factor (i.e., the z-factor). The application of the model provides estimation of gas-in-place. The gas material balance relation including ONLY water influx is given in dimensionless form as: pzD=(1−GpD)(1−WeD)  where: pzD=p/zpi/zi WeD=weBWGBgi GpD=GpG\n The following empirical model is proposed for dimensionless water influx function (WeD): WeD=aGpb+1\n Substituting this model into the gas material balance yields: pzD=(1−GpD)(1−aGpb+1)\n The proposed power-law water influx model was exhaustively validated using the Carter-Tracy and Van Everdingen-Hurst methods to simulate water influx and pressure-cumulative gas production behavior for an unsteady-state water-influx system. The results of these simulation cases were fitted using the proposed (empirical) power-law water influx model and for every case that was tested, the proposed model gave an essentially perfect correlation of the simulated reservoir performance behavior.","PeriodicalId":518539,"journal":{"name":"Day 3 Wed, February 14, 2024","volume":"116 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, February 14, 2024","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-24407-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A simple power-law model is presented for performance of gas reservoirs experiencing water influx using only cumulative production, reservoir pressure, and the gas deviation factor (i.e., the z-factor). The application of the model provides estimation of gas-in-place. The gas material balance relation including ONLY water influx is given in dimensionless form as: pzD=(1−GpD)(1−WeD)  where: pzD=p/zpi/zi WeD=weBWGBgi GpD=GpG The following empirical model is proposed for dimensionless water influx function (WeD): WeD=aGpb+1 Substituting this model into the gas material balance yields: pzD=(1−GpD)(1−aGpb+1) The proposed power-law water influx model was exhaustively validated using the Carter-Tracy and Van Everdingen-Hurst methods to simulate water influx and pressure-cumulative gas production behavior for an unsteady-state water-influx system. The results of these simulation cases were fitted using the proposed (empirical) power-law water influx model and for every case that was tested, the proposed model gave an essentially perfect correlation of the simulated reservoir performance behavior.
注水气藏物料平衡的简化动力法模型
本文提出了一个简单的幂律模型,仅使用累积产量、储层压力和气体偏差系数(即 z 系数),就能对发生水流入的气藏进行性能分析。应用该模型可以估算就地气量。气体物质平衡关系(包括 ONLY 水流入量)以无量纲形式表示为: pzD=(1-GpD)(1-WeD) 其中: pzD=p/zpi/zi WeD=weBWGBgi GpD=GpG 下面是无量纲水流入量函数(WeD)的经验模型:WeD=aGpb+1 将该模型代入气体物料平衡可得: pzD=(1-GpD)(1-aGpb+1) 使用 Carter-Tracy 和 Van Everdingen-Hurst 方法对所提出的幂律水流入模型进行了详尽的验证,以模拟非稳态水流入系统的水流入和压力累积产气行为。使用提出的(经验)幂律水流入模型对这些模拟案例的结果进行了拟合,在每个测试案例中,提出的模型都与模拟的储层性能行为具有基本完美的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信