Principal component analysis in application to brillouin microscopy data

Hadi Mahmodi Sheikh Sarmast, C. G. Poulton, Mathew Leslie, Glenn Oldham, Hui Xin Ong, Steven J. Langford, I. Kabakova
{"title":"Principal component analysis in application to brillouin microscopy data","authors":"Hadi Mahmodi Sheikh Sarmast, C. G. Poulton, Mathew Leslie, Glenn Oldham, Hui Xin Ong, Steven J. Langford, I. Kabakova","doi":"10.1088/2515-7647/ad369d","DOIUrl":null,"url":null,"abstract":"\n Brillouin microscopy has recently emerged as a new bio-imaging modality that provides information on the micromechanical properties of biological materials, cells and tissues. The data collected in a typical Brillouin microscopy experiment represents the high-dimensional set of spectral information. Its analysis requires non-trivial approaches due to subtlety in spectral variations as well as spatial and spectral overlaps of measured features. This article offers a guide to the application of Principal Component Analysis (PCA) for processing Brillouin imaging data. Being unsupervised multivariate analysis, PCA is well-suited to tackle processing of complex Brillouin spectra from heterogeneous biological samples with minimal a priori information requirements. We point out the importance of data pre-processing steps in order to improve outcomes of PCA. We also present a strategy where PCA combined with k-means clustering method can provide a working solution to data reconstruction and deeper insights into sample composition, structure and mechanics.","PeriodicalId":517326,"journal":{"name":"Journal of Physics: Photonics","volume":"101 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2515-7647/ad369d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brillouin microscopy has recently emerged as a new bio-imaging modality that provides information on the micromechanical properties of biological materials, cells and tissues. The data collected in a typical Brillouin microscopy experiment represents the high-dimensional set of spectral information. Its analysis requires non-trivial approaches due to subtlety in spectral variations as well as spatial and spectral overlaps of measured features. This article offers a guide to the application of Principal Component Analysis (PCA) for processing Brillouin imaging data. Being unsupervised multivariate analysis, PCA is well-suited to tackle processing of complex Brillouin spectra from heterogeneous biological samples with minimal a priori information requirements. We point out the importance of data pre-processing steps in order to improve outcomes of PCA. We also present a strategy where PCA combined with k-means clustering method can provide a working solution to data reconstruction and deeper insights into sample composition, structure and mechanics.
主成分分析在光致发光显微镜数据中的应用
布里渊显微镜是最近兴起的一种新的生物成像方式,可提供有关生物材料、细胞和组织微观机械特性的信息。在典型的布里渊显微镜实验中收集的数据代表了一组高维的光谱信息。由于光谱变化的微妙性以及测量特征的空间和光谱重叠,其分析需要非传统的方法。本文介绍了如何应用主成分分析法(PCA)处理布里渊成像数据。作为一种无监督的多元分析方法,PCA 非常适合处理来自异质生物样本的复杂布里渊光谱,对先验信息的要求极低。我们指出了数据预处理步骤对于提高 PCA 分析结果的重要性。我们还提出了一种策略,即 PCA 与 k-means 聚类方法相结合,可为数据重建提供可行的解决方案,并加深对样本组成、结构和力学的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信