Generalized H-fold sumset and Subsequence sum

Mohan, Ram Krishna Pandey
{"title":"Generalized H-fold sumset and Subsequence sum","authors":"Mohan, Ram Krishna Pandey","doi":"10.5802/crmath.483","DOIUrl":null,"url":null,"abstract":"Let $A$ and $H$ be nonempty finite sets of integers and positive integers, respectively. The generalized $H$-fold sumset, denoted by $H^{(r)}A$, is the union of the sumsets $h^{(r)}A$ for $h\\in H$ where, the sumset $h^{(r)}A$ is the set of all integers that can be represented as a sum of $h$ elements from $A$ with no summand in the representation appearing more than $r$ times. In this paper, we find the optimal lower bound for the cardinality of $H^{(r)}A$, i.e., for $|H^{(r)}A|$ and the structure of the underlying sets $A$ and $H$ when $|H^{(r)}A|$ is equal to the optimal lower bound in the cases $A$ contains only positive integers and $A$ contains only nonnegative integers. This generalizes recent results of Bhanja. Furthermore, with a particular set $H$, since $H^{(r)}A$ generalizes subsequence sum and hence subset sum, we get several results of subsequence sums and subset sums as special cases.","PeriodicalId":395483,"journal":{"name":"Comptes Rendus. Mathématique","volume":"6 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus. Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $A$ and $H$ be nonempty finite sets of integers and positive integers, respectively. The generalized $H$-fold sumset, denoted by $H^{(r)}A$, is the union of the sumsets $h^{(r)}A$ for $h\in H$ where, the sumset $h^{(r)}A$ is the set of all integers that can be represented as a sum of $h$ elements from $A$ with no summand in the representation appearing more than $r$ times. In this paper, we find the optimal lower bound for the cardinality of $H^{(r)}A$, i.e., for $|H^{(r)}A|$ and the structure of the underlying sets $A$ and $H$ when $|H^{(r)}A|$ is equal to the optimal lower bound in the cases $A$ contains only positive integers and $A$ contains only nonnegative integers. This generalizes recent results of Bhanja. Furthermore, with a particular set $H$, since $H^{(r)}A$ generalizes subsequence sum and hence subset sum, we get several results of subsequence sums and subset sums as special cases.
广义 H 折叠和集与后继和集
设 $A$ 和 $H$ 分别是非空的有限整数集和正整数集。广义的 $H$ 折叠和集,用 $H^{(r)}A$ 表示,是 H$ 中 $h/$ 的和集 $h^{(r)}A$ 的联合,其中,和集 $h^{(r)}A$ 是所有整数的集合,这些整数可以表示为来自 $A$ 的 $h$ 元素之和,且表示中出现的次数不超过 $r$。在本文中,我们找到了$H^{(r)}A$ cardinality 的最优下限,即当$H^{(r)}A|$等于$A$只包含正整数和$A$只包含非负整数情况下的最优下限时,$H^{(r)}A|$以及底层集合$A$和$H$的结构。这概括了班加的最新结果。此外,对于一个特定的集合 $H$,由于 $H^{(r)}A$ 概括了子集和,因此子集和是子集和的特例,我们得到了子集和和子集和的几个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信