{"title":"Generalized H-fold sumset and Subsequence sum","authors":"Mohan, Ram Krishna Pandey","doi":"10.5802/crmath.483","DOIUrl":null,"url":null,"abstract":"Let $A$ and $H$ be nonempty finite sets of integers and positive integers, respectively. The generalized $H$-fold sumset, denoted by $H^{(r)}A$, is the union of the sumsets $h^{(r)}A$ for $h\\in H$ where, the sumset $h^{(r)}A$ is the set of all integers that can be represented as a sum of $h$ elements from $A$ with no summand in the representation appearing more than $r$ times. In this paper, we find the optimal lower bound for the cardinality of $H^{(r)}A$, i.e., for $|H^{(r)}A|$ and the structure of the underlying sets $A$ and $H$ when $|H^{(r)}A|$ is equal to the optimal lower bound in the cases $A$ contains only positive integers and $A$ contains only nonnegative integers. This generalizes recent results of Bhanja. Furthermore, with a particular set $H$, since $H^{(r)}A$ generalizes subsequence sum and hence subset sum, we get several results of subsequence sums and subset sums as special cases.","PeriodicalId":395483,"journal":{"name":"Comptes Rendus. Mathématique","volume":"6 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus. Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $A$ and $H$ be nonempty finite sets of integers and positive integers, respectively. The generalized $H$-fold sumset, denoted by $H^{(r)}A$, is the union of the sumsets $h^{(r)}A$ for $h\in H$ where, the sumset $h^{(r)}A$ is the set of all integers that can be represented as a sum of $h$ elements from $A$ with no summand in the representation appearing more than $r$ times. In this paper, we find the optimal lower bound for the cardinality of $H^{(r)}A$, i.e., for $|H^{(r)}A|$ and the structure of the underlying sets $A$ and $H$ when $|H^{(r)}A|$ is equal to the optimal lower bound in the cases $A$ contains only positive integers and $A$ contains only nonnegative integers. This generalizes recent results of Bhanja. Furthermore, with a particular set $H$, since $H^{(r)}A$ generalizes subsequence sum and hence subset sum, we get several results of subsequence sums and subset sums as special cases.