SoftQE: Learned Representations of Queries Expanded by LLMs

Varad Pimpalkhute, John Heyer, Xusen Yin, Sameer Gupta
{"title":"SoftQE: Learned Representations of Queries Expanded by LLMs","authors":"Varad Pimpalkhute, John Heyer, Xusen Yin, Sameer Gupta","doi":"10.48550/arXiv.2402.12663","DOIUrl":null,"url":null,"abstract":"We investigate the integration of Large Language Models (LLMs) into query encoders to improve dense retrieval without increasing latency and cost, by circumventing the dependency on LLMs at inference time. SoftQE incorporates knowledge from LLMs by mapping embeddings of input queries to those of the LLM-expanded queries. While improvements over various strong baselines on in-domain MS-MARCO metrics are marginal, SoftQE improves performance by 2.83 absolute percentage points on average on five out-of-domain BEIR tasks.","PeriodicalId":126309,"journal":{"name":"European Conference on Information Retrieval","volume":"1024 ","pages":"68-77"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.12663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the integration of Large Language Models (LLMs) into query encoders to improve dense retrieval without increasing latency and cost, by circumventing the dependency on LLMs at inference time. SoftQE incorporates knowledge from LLMs by mapping embeddings of input queries to those of the LLM-expanded queries. While improvements over various strong baselines on in-domain MS-MARCO metrics are marginal, SoftQE improves performance by 2.83 absolute percentage points on average on five out-of-domain BEIR tasks.
SoftQE:通过 LLM 扩展的查询学习表示法
我们研究了将大型语言模型(LLM)集成到查询编码器中的问题,通过在推理时避免对 LLM 的依赖,在不增加延迟和成本的情况下改进密集检索。SoftQE 通过将输入查询的嵌入映射到 LLM 扩展查询的嵌入,将 LLM 的知识融入其中。与各种强基线相比,SoftQE 在域内 MS-MARCO 指标上的改进微乎其微,但在五项域外 BEIR 任务上,其性能平均提高了 2.83 个绝对百分点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信