Model Averaging for Accelerated Failure Time Models with Missing Censoring Indicators

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Longbiao Liao, Jinghao Liu
{"title":"Model Averaging for Accelerated Failure Time Models with Missing Censoring Indicators","authors":"Longbiao Liao, Jinghao Liu","doi":"10.3390/math12050641","DOIUrl":null,"url":null,"abstract":"Model averaging has become a crucial statistical methodology, especially in situations where numerous models vie to elucidate a phenomenon. Over the past two decades, there has been substantial advancement in the theory of model averaging. However, a gap remains in the field regarding model averaging in the presence of missing censoring indicators. Therefore, in this paper, we present a new model-averaging method for accelerated failure time models with right censored data when censoring indicators are missing. The model-averaging weights are determined by minimizing the Mallows criterion. Under mild conditions, the calculated weights exhibit asymptotic optimality, leading to the model-averaging estimator achieving the lowest squared error asymptotically. Monte Carlo simulations demonstrate that the method proposed in this paper has lower mean squared errors compared to other model-selection and model-averaging methods. Finally, we conducted an empirical analysis using the real-world Acute Myeloid Leukemia (AML) dataset. The results of the empirical analysis demonstrate that the method proposed in this paper outperforms existing approaches in terms of predictive performance.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 10","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12050641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Model averaging has become a crucial statistical methodology, especially in situations where numerous models vie to elucidate a phenomenon. Over the past two decades, there has been substantial advancement in the theory of model averaging. However, a gap remains in the field regarding model averaging in the presence of missing censoring indicators. Therefore, in this paper, we present a new model-averaging method for accelerated failure time models with right censored data when censoring indicators are missing. The model-averaging weights are determined by minimizing the Mallows criterion. Under mild conditions, the calculated weights exhibit asymptotic optimality, leading to the model-averaging estimator achieving the lowest squared error asymptotically. Monte Carlo simulations demonstrate that the method proposed in this paper has lower mean squared errors compared to other model-selection and model-averaging methods. Finally, we conducted an empirical analysis using the real-world Acute Myeloid Leukemia (AML) dataset. The results of the empirical analysis demonstrate that the method proposed in this paper outperforms existing approaches in terms of predictive performance.
具有缺失校准指标的加速故障时间模型的模型平均法
模型平均法已成为一种重要的统计方法,尤其是在众多模型争相阐释一种现象的情况下。过去二十年来,模型平均理论取得了长足的进步。然而,在存在缺失普查指标的情况下,模型平均法在该领域仍存在空白。因此,在本文中,我们提出了一种新的模型平均方法,适用于普查指标缺失时具有右删失数据的加速故障时间模型。模型平均权重是通过最小化 Mallows 准则确定的。在温和条件下,计算出的权重表现出渐进最优性,从而使模型平均估计器达到渐进最低平方误差。蒙特卡罗模拟证明,与其他模型选择和模型平均方法相比,本文提出的方法具有更低的均方误差。最后,我们利用现实世界中的急性髓性白血病(AML)数据集进行了实证分析。实证分析的结果表明,本文提出的方法在预测性能方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信