NO2 gas response improvement method by adopting oxygen vacancy controlled In2O3 double sensing layers

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Kangwook Choi, Gyuweon Jung, Wonjun Shin, Jinwoo Park, Chayoung Lee, Donghee Kim, Hunhee Shin, Woo Young Choi, Jong-Ho Lee
{"title":"NO2 gas response improvement method by adopting oxygen vacancy controlled In2O3 double sensing layers","authors":"Kangwook Choi,&nbsp;Gyuweon Jung,&nbsp;Wonjun Shin,&nbsp;Jinwoo Park,&nbsp;Chayoung Lee,&nbsp;Donghee Kim,&nbsp;Hunhee Shin,&nbsp;Woo Young Choi,&nbsp;Jong-Ho Lee","doi":"10.1016/j.sse.2024.108926","DOIUrl":null,"url":null,"abstract":"<div><p>Recent studies have shown that the sensing capabilities of NO<sub>2</sub> gas sensors can be enhanced by controlling the amount of oxygen vacancy (V<sub>O</sub>) in the sensing layer. The sensing layer of the resistor-type sensor can be divided into two regions close to the surface and substrate interface. To control the amount of oxygen vacancy in the sensing layer, oxygen gas flow rate during sputtering is regulated. We fabricate the In<sub>2</sub>O<sub>3</sub> gas sensor by vertically adjusting the oxygen vacancy. We place an oxygen vacancy-poor layer on the lower sensing layer and an oxygen vacancy-rich layer on the upper sensing layer. The resistance characteristics of the fabricated sensor are measured through the transmission line method. The NO<sub>2</sub> gas sensing performance of the double sensing layer sensor and the single sensing layer sensor is measured. The best response and fastest response time are observed in the sensor with oxygen vacancy controlled double sensing layer.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"216 ","pages":"Article 108926"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124000753","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies have shown that the sensing capabilities of NO2 gas sensors can be enhanced by controlling the amount of oxygen vacancy (VO) in the sensing layer. The sensing layer of the resistor-type sensor can be divided into two regions close to the surface and substrate interface. To control the amount of oxygen vacancy in the sensing layer, oxygen gas flow rate during sputtering is regulated. We fabricate the In2O3 gas sensor by vertically adjusting the oxygen vacancy. We place an oxygen vacancy-poor layer on the lower sensing layer and an oxygen vacancy-rich layer on the upper sensing layer. The resistance characteristics of the fabricated sensor are measured through the transmission line method. The NO2 gas sensing performance of the double sensing layer sensor and the single sensing layer sensor is measured. The best response and fastest response time are observed in the sensor with oxygen vacancy controlled double sensing layer.

采用氧空位控制 In2O3 双传感层改善 NO2 气体响应的方法
最近的研究表明,可以通过控制传感层中氧空位(VO)的数量来提高二氧化氮气体传感器的传感能力。电阻式传感器的传感层可分为靠近表面和基底界面的两个区域。为了控制传感层中的氧空位量,需要调节溅射过程中的氧气流速。我们通过垂直调节氧空位来制造 In2O3 气体传感器。我们在下传感层上放置贫氧空位层,在上传感层上放置富氧空位层。通过传输线方法测量了所制传感器的电阻特性。测量了双传感层传感器和单传感层传感器的二氧化氮气体传感性能。氧空位控制双传感层传感器的响应最佳,响应时间最快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信