{"title":"A two-stage transformer based network for motor imagery classification","authors":"Priyanshu Chaudhary , Nischay Dhankhar , Amit Singhal , K.P.S. Rana","doi":"10.1016/j.medengphy.2024.104154","DOIUrl":null,"url":null,"abstract":"<div><p>Brain-computer interfaces (BCIs) are used to understand brain functioning and develop therapies for neurological and neurodegenerative disorders. Therefore, BCIs are crucial in rehabilitating motor dysfunction and advancing motor imagery applications. For motor imagery, electroencephalogram (EEG) signals are used to classify the subject's intention of moving a body part without actually moving it. This paper presents a two-stage transformer-based architecture that employs handcrafted features and deep learning techniques to enhance the classification performance on benchmarked EEG signals. Stage-1 is built on parallel convolution based EEGNet, multi-head attention, and separable temporal convolution networks for spatiotemporal feature extraction. Further, for enhanced classification, in stage-2, additional features and embeddings extracted from stage-1 are used to train TabNet. In addition, a novel channel cluster swapping data augmentation technique is also developed to handle the issue of limited samples for training deep learning architectures. The developed two-stage architecture offered an average classification accuracy of 88.5 % and 88.3 % on the BCI Competition IV-2a and IV-2b datasets, respectively, which is approximately 3.0 % superior over similar recent reported works.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"128 ","pages":"Article 104154"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324000559","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Brain-computer interfaces (BCIs) are used to understand brain functioning and develop therapies for neurological and neurodegenerative disorders. Therefore, BCIs are crucial in rehabilitating motor dysfunction and advancing motor imagery applications. For motor imagery, electroencephalogram (EEG) signals are used to classify the subject's intention of moving a body part without actually moving it. This paper presents a two-stage transformer-based architecture that employs handcrafted features and deep learning techniques to enhance the classification performance on benchmarked EEG signals. Stage-1 is built on parallel convolution based EEGNet, multi-head attention, and separable temporal convolution networks for spatiotemporal feature extraction. Further, for enhanced classification, in stage-2, additional features and embeddings extracted from stage-1 are used to train TabNet. In addition, a novel channel cluster swapping data augmentation technique is also developed to handle the issue of limited samples for training deep learning architectures. The developed two-stage architecture offered an average classification accuracy of 88.5 % and 88.3 % on the BCI Competition IV-2a and IV-2b datasets, respectively, which is approximately 3.0 % superior over similar recent reported works.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.