Upgrades of the ESPERTA forecast tool for Solar Proton Events

M. Laurenza, M. Stumpo, Pietro Zucca, Mattia Mancini, S. Benella, L. Clark, Tommaso Alberti, Maria Federica Marcucci
{"title":"Upgrades of the ESPERTA forecast tool for Solar Proton Events","authors":"M. Laurenza, M. Stumpo, Pietro Zucca, Mattia Mancini, S. Benella, L. Clark, Tommaso Alberti, Maria Federica Marcucci","doi":"10.1051/swsc/2024007","DOIUrl":null,"url":null,"abstract":"The Empirical model for Solar Proton Events Real Time Alert (ESPERTA) exploits three solar parameters (flare longitude, soft X-ray fluence, and radio fluence) to provide a timely prediction for the\noccurrence of solar proton events (SPEs, i.e., when the $>$10MeV proton flux is $\\geq$10 pfu) after the emission of a $\\geq$ M2 flare. In addition, it makes a prediction for the more geoeffective SPEs for which the $>$10 MeV proton flux is $\\geq$ 100 pfu. In this paper, we study two different ways to upgrade the ESPERTA model and implement it in real time: 1) by using ground based observations from the LOFAR stations; 2) by applying a novel machine\nlearning algorithm to flare-based parameters to provide early warnings of SPE occurrence together with a fine-tuned radiation storm level. As a last step, we perform a preliminary study using a neural network to forecast the proton flux profile to complement the ESPERTA tool.\nWe evaluate the models over flare and SPE data the last two solar cycles and discuss the performance and the limits and advantages of the three methods.","PeriodicalId":510580,"journal":{"name":"Journal of Space Weather and Space Climate","volume":"17 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Weather and Space Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/swsc/2024007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Empirical model for Solar Proton Events Real Time Alert (ESPERTA) exploits three solar parameters (flare longitude, soft X-ray fluence, and radio fluence) to provide a timely prediction for the occurrence of solar proton events (SPEs, i.e., when the $>$10MeV proton flux is $\geq$10 pfu) after the emission of a $\geq$ M2 flare. In addition, it makes a prediction for the more geoeffective SPEs for which the $>$10 MeV proton flux is $\geq$ 100 pfu. In this paper, we study two different ways to upgrade the ESPERTA model and implement it in real time: 1) by using ground based observations from the LOFAR stations; 2) by applying a novel machine learning algorithm to flare-based parameters to provide early warnings of SPE occurrence together with a fine-tuned radiation storm level. As a last step, we perform a preliminary study using a neural network to forecast the proton flux profile to complement the ESPERTA tool. We evaluate the models over flare and SPE data the last two solar cycles and discuss the performance and the limits and advantages of the three methods.
ESPERTA太阳质子事件预报工具的升级
太阳质子事件实时警报经验模型(ESPERTA)利用三个太阳参数(耀斑经度、软X射线通量和射电通量),在发射$\geq$ M2耀斑后及时预测太阳质子事件(SPEs,即当$>$10MeV质子通量为$\geq$10 pfu时)的发生。此外,它还对地球效率更高的SPE进行了预测,即当$>$10MeV质子通量为$\geq$100 pfu时。在本文中,我们研究了两种不同的方法来升级ESPERTA模型并将其实时应用:1)利用LOFAR台站的地面观测数据;2)对基于耀斑的参数应用一种新颖的机器学习算法,以提供SPE发生的早期预警以及微调的辐射风暴水平。作为最后一步,我们利用神经网络对质子通量剖面进行了初步研究,以补充ESPERTA工具。我们对过去两个太阳周期的耀斑和SPE数据模型进行了评估,并讨论了这三种方法的性能、局限性和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信