Large tunneling magnetoresistance and its high bias stability in Weyl half-semimetal based lateral magnetic tunnel junctions

Jianing Tan, G. W. (. W. Yang, G. Ouyang
{"title":"Large tunneling magnetoresistance and its high bias stability in Weyl half-semimetal based lateral magnetic tunnel junctions","authors":"Jianing Tan, G. W. (. W. Yang, G. Ouyang","doi":"10.1088/1367-2630/ad345b","DOIUrl":null,"url":null,"abstract":"\n Magnetic tunnel junctions (MTJs) based on novel states of two-dimensional (2D) magnetic materials will significantly improve the value of the tunneling magnetoresistance (TMR) ratio. However, most 2D magnetic materials exhibit low critical temperatures, limiting their functionality to lower temperatures rather than room temperature. Moreover, most MTJs experience the decay of TMR ratio at large bias voltages within a low spin injection efficiency (SIE). Here, we construct a series of MTJs with Weyl half-semimetal (WHSM, e.g., MnSiS3, MnSiSe3, and MnGeSe3 monolayers) as the electrodes and investigate the spin-dependent transport properties in these kind of lateral heterojunctions by employing density functional theory combined with non-equilibrium Green’s function method. We find that an ultrahigh TMR (~109%) can be obtained firmly at a small bias voltage and maintains a high SIE even at a large bias voltage, and MnSiSe3 monolayer is predicted to exhibit a high critical temperature. Additionally, we reveal that the same structure allows for the generation of fully spin-polarized photocurrent, irrespective of the polarization angle. These findings underscore the potential of Weyl half-semimetals as candidate materials for high-performance spintronic devices.","PeriodicalId":508829,"journal":{"name":"New Journal of Physics","volume":"5 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad345b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic tunnel junctions (MTJs) based on novel states of two-dimensional (2D) magnetic materials will significantly improve the value of the tunneling magnetoresistance (TMR) ratio. However, most 2D magnetic materials exhibit low critical temperatures, limiting their functionality to lower temperatures rather than room temperature. Moreover, most MTJs experience the decay of TMR ratio at large bias voltages within a low spin injection efficiency (SIE). Here, we construct a series of MTJs with Weyl half-semimetal (WHSM, e.g., MnSiS3, MnSiSe3, and MnGeSe3 monolayers) as the electrodes and investigate the spin-dependent transport properties in these kind of lateral heterojunctions by employing density functional theory combined with non-equilibrium Green’s function method. We find that an ultrahigh TMR (~109%) can be obtained firmly at a small bias voltage and maintains a high SIE even at a large bias voltage, and MnSiSe3 monolayer is predicted to exhibit a high critical temperature. Additionally, we reveal that the same structure allows for the generation of fully spin-polarized photocurrent, irrespective of the polarization angle. These findings underscore the potential of Weyl half-semimetals as candidate materials for high-performance spintronic devices.
基于韦尔半半亚金属的横向磁隧道结中的大隧道磁阻及其高偏置稳定性
基于二维(2D)磁性材料新状态的磁隧道结(MTJ)将显著提高隧道磁阻(TMR)比值。然而,大多数二维磁性材料的临界温度较低,这限制了它们在较低温度而非室温下的功能。此外,大多数 MTJ 在低自旋注入效率(SIE)的大偏置电压下会出现 TMR 比率衰减。在这里,我们构建了一系列以韦尔半半金属(WHSM,如 MnSiS3、MnSiSe3 和 MnGeSe3 单层)为电极的 MTJ,并采用密度泛函理论结合非平衡格林函数法研究了这类横向异质结中自旋相关的传输特性。我们发现,在较小的偏置电压下就能牢固地获得超高的 TMR(~109%),即使在较大的偏置电压下也能保持较高的 SIE,而且 MnSiSe3 单层预计会表现出较高的临界温度。此外,我们还发现,无论偏振角如何,相同的结构都能产生完全自旋偏振的光电流。这些发现强调了韦尔半半金属作为高性能自旋电子器件候选材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信