Hexaconazole exposure may lead to Parkinson via disrupting glucocerebrosidase and parkin: molecular interaction, dynamics, MMPBSA and DFT based in-silico predictive toxicology.

IF 2.2 4区 医学 Q3 TOXICOLOGY
Toxicology Research Pub Date : 2024-02-13 eCollection Date: 2024-02-01 DOI:10.1093/toxres/tfae018
Faisal K Alkholifi, Sayed Aliul Hasan Abdi, Marwa Qadri, Shabihul Fatma Sayed, Amani Khardali, Sumathi Nagarajan, Alhamyani Abdulrahman, Nayef Aldabaan, Yahia Alghazwani
{"title":"Hexaconazole exposure may lead to Parkinson via disrupting glucocerebrosidase and parkin: molecular interaction, dynamics, MMPBSA and DFT based <i>in</i>-silico predictive toxicology.","authors":"Faisal K Alkholifi, Sayed Aliul Hasan Abdi, Marwa Qadri, Shabihul Fatma Sayed, Amani Khardali, Sumathi Nagarajan, Alhamyani Abdulrahman, Nayef Aldabaan, Yahia Alghazwani","doi":"10.1093/toxres/tfae018","DOIUrl":null,"url":null,"abstract":"<p><p>Hexaconazole is a known fungicide for agricultural purposes. It has bioaccumulation ability which makes it important for its toxicological characterization. There are various neurological impacts of pollutants on human health. Therefore, in this study, we have done predictive analyses of the interaction mechanism of hexaconazole by molecular interaction analysis, molecular dynamics simulation, and Poisson-Boltzmann surface area (MM-PBSA) to assess hexaconazole's potency to disrupt the homeostasis of glucocerebrosidase (-7.9 kcal/mol) and parkin (-5.67 kcal/mol) proteins which have significant roles in the manifestation of Parkinson disease. The findings reveal that hexaconazole has the potency to form stable interactions with glucocerebrosidase and parkin. This research provides a molecular and atomic-level understanding of how hexaconazole exposure may disrupt the homeostasis of glucocerebrosidase and parkin. The root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration, and hydrogen bonding exhibited the potent molecular interactions of hexaconazole, which may lead to neurological manifestations such as Parkinson disease.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 1","pages":"tfae018"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939372/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae018","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hexaconazole is a known fungicide for agricultural purposes. It has bioaccumulation ability which makes it important for its toxicological characterization. There are various neurological impacts of pollutants on human health. Therefore, in this study, we have done predictive analyses of the interaction mechanism of hexaconazole by molecular interaction analysis, molecular dynamics simulation, and Poisson-Boltzmann surface area (MM-PBSA) to assess hexaconazole's potency to disrupt the homeostasis of glucocerebrosidase (-7.9 kcal/mol) and parkin (-5.67 kcal/mol) proteins which have significant roles in the manifestation of Parkinson disease. The findings reveal that hexaconazole has the potency to form stable interactions with glucocerebrosidase and parkin. This research provides a molecular and atomic-level understanding of how hexaconazole exposure may disrupt the homeostasis of glucocerebrosidase and parkin. The root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration, and hydrogen bonding exhibited the potent molecular interactions of hexaconazole, which may lead to neurological manifestations such as Parkinson disease.

暴露于己康唑可能会通过干扰葡萄糖脑苷脂酶和帕金森而导致帕金森病:基于分子相互作用、动力学、MMPBSA 和 DFT 的室内预测毒理学。
己唑醇是一种已知的农用杀菌剂。它具有生物蓄积能力,因此对其进行毒理学特征描述非常重要。污染物对人体健康有各种神经影响。因此,在本研究中,我们通过分子相互作用分析、分子动力学模拟和泊松-波尔兹曼表面积(MM-PBSA)对己康唑的相互作用机制进行了预测分析,以评估己康唑破坏葡萄糖脑苷脂(-7.9 kcal/mol)和帕金森蛋白(-5.67 kcal/mol)平衡的效力,这两种蛋白在帕金森病的表现中具有重要作用。研究结果表明,己唑醇能与葡萄糖脑苷脂和帕金形成稳定的相互作用。这项研究从分子和原子水平上揭示了暴露于己康唑会如何破坏葡萄糖脑苷脂和帕金蛋白的平衡。均方根偏差(RMSD)、均方根波动(RMSF)、回转半径和氢键显示了己康唑的强大分子相互作用,这可能会导致帕金森病等神经系统表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicology Research
Toxicology Research TOXICOLOGY-
CiteScore
3.60
自引率
0.00%
发文量
82
期刊介绍: A multi-disciplinary journal covering the best research in both fundamental and applied aspects of toxicology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信