Regina De Matteo, Juan M. Rey, Rocío Corfield, Victoria A. Gómez Andrade, Patricio R. Santagapita, Florencia Di Salvo, Oscar E. Pérez
{"title":"Chitosan-inspired Matrices for Folic Acid. Insightful Structural Characterization and Ensured Bioaccessibility","authors":"Regina De Matteo, Juan M. Rey, Rocío Corfield, Victoria A. Gómez Andrade, Patricio R. Santagapita, Florencia Di Salvo, Oscar E. Pérez","doi":"10.1007/s11483-024-09833-x","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this research was to obtain and characterize chitosan (CS) based matrices conceived as folic acid (FA) dried reservoir that could find application as food coating upon rehydration. An Argentinean and high molecular weight (MW) chitosan (AC) was used and contrasted with a commercial type one (CC). FTIR and XRD were applied for the polysaccharide-vitamin dried mixed systems characterization. Shifts in bands of FA and AC or CC were observed in the mixed systems, confirming the interaction among the components, for example, the bands at 1382 and 1391 cm<sup>− 1</sup> (AC and FA, respectively) shifted to 1387 cm<sup>–1</sup> in the in AC-FA mixed systems. XRD data showed that the FA is in its protonated form as expected and is maintained in the different mixed systems obtained using either with CC or AC, demonstrating the robustness and applicability of the material to properly conserve the active ingredient.</p><p>The ultrastructure and topography were studied by SEM and AFM, respectively. FA incrustations in a self-associated form were observed in the topography images. Variations in topography observed for the AC-FA and CC-FA mixed systems could be attributed to specific interactions between the components and the molecular features of each CS (i.e. the mean particle size was 63 ± 3 and 9 ± 1 nm and, roughness gave values of 0.47 and 0.41 nm, respectively).</p><p>Vitamin bioaccessibility remained unchanged compared to the control (88.36% ±10.35%), being equal to 91.08% ± 5.02% for AC-FA and 71.56% ±14.08% for CC-FA, after submitted samples to an in vitro digestion process. In sum, mixed AC-FA systems obtained are promising materials for a possible additional application in coating matrices inspired by biopolymers to improve food preservation, maintaining the bioaccessibility of vitamins.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 2","pages":"412 - 424"},"PeriodicalIF":2.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09833-x","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this research was to obtain and characterize chitosan (CS) based matrices conceived as folic acid (FA) dried reservoir that could find application as food coating upon rehydration. An Argentinean and high molecular weight (MW) chitosan (AC) was used and contrasted with a commercial type one (CC). FTIR and XRD were applied for the polysaccharide-vitamin dried mixed systems characterization. Shifts in bands of FA and AC or CC were observed in the mixed systems, confirming the interaction among the components, for example, the bands at 1382 and 1391 cm− 1 (AC and FA, respectively) shifted to 1387 cm–1 in the in AC-FA mixed systems. XRD data showed that the FA is in its protonated form as expected and is maintained in the different mixed systems obtained using either with CC or AC, demonstrating the robustness and applicability of the material to properly conserve the active ingredient.
The ultrastructure and topography were studied by SEM and AFM, respectively. FA incrustations in a self-associated form were observed in the topography images. Variations in topography observed for the AC-FA and CC-FA mixed systems could be attributed to specific interactions between the components and the molecular features of each CS (i.e. the mean particle size was 63 ± 3 and 9 ± 1 nm and, roughness gave values of 0.47 and 0.41 nm, respectively).
Vitamin bioaccessibility remained unchanged compared to the control (88.36% ±10.35%), being equal to 91.08% ± 5.02% for AC-FA and 71.56% ±14.08% for CC-FA, after submitted samples to an in vitro digestion process. In sum, mixed AC-FA systems obtained are promising materials for a possible additional application in coating matrices inspired by biopolymers to improve food preservation, maintaining the bioaccessibility of vitamins.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.