Satish Jawalageri , Ramin Ghiasi , Soroosh Jalilvand , Luke J. Prendergast , Abdollah Malekjafarian
{"title":"A data-driven approach for scour detection around monopile-supported offshore wind turbines using Naive Bayes classification","authors":"Satish Jawalageri , Ramin Ghiasi , Soroosh Jalilvand , Luke J. Prendergast , Abdollah Malekjafarian","doi":"10.1016/j.marstruc.2023.103565","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel data-driven framework for scour detection around offshore wind turbines (OWTs), where damage features are derived from wind and wave-induced acceleration signals collected along the tower. A numerical model of the NREL 5 MW wind turbine, which considers aerodynamic and hydrodynamic loading with soil-structure interaction (SSI) and servo-dynamics, is developed. The model is used to simulate the acceleration responses along the tower for a healthy structure, and a structure affected by progressive scour. A data segmentation process is initially performed on the collected data, which is followed by a feature selection scheme based on the analysis-of-variance (ANOVA) algorithm, to eliminate irrelevant characteristics from the time domain feature set of responses. The proposed framework consists of two main components: (a) offline training, and (b) real-time classification. The acceleration responses collected from the healthy structure and the structure subjected to three different damage scenarios (different scour depths) and under various load conditions, are used in the offline training mode. The selected feature vector from the feature extraction process is used as input to a Naive Bayes classifier (NBC) algorithm to train the model. In the real-time classification, a prediction of the scour depth affecting the structure is performed using a new dataset simulated from unseen load cases and scour conditions of the OWT. The results show that the model trained in the offline stage can predict the scour depth in the real-time monitoring stage with performance measures over approximately 94%.</p></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"95 ","pages":"Article 103565"},"PeriodicalIF":4.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833923001983","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel data-driven framework for scour detection around offshore wind turbines (OWTs), where damage features are derived from wind and wave-induced acceleration signals collected along the tower. A numerical model of the NREL 5 MW wind turbine, which considers aerodynamic and hydrodynamic loading with soil-structure interaction (SSI) and servo-dynamics, is developed. The model is used to simulate the acceleration responses along the tower for a healthy structure, and a structure affected by progressive scour. A data segmentation process is initially performed on the collected data, which is followed by a feature selection scheme based on the analysis-of-variance (ANOVA) algorithm, to eliminate irrelevant characteristics from the time domain feature set of responses. The proposed framework consists of two main components: (a) offline training, and (b) real-time classification. The acceleration responses collected from the healthy structure and the structure subjected to three different damage scenarios (different scour depths) and under various load conditions, are used in the offline training mode. The selected feature vector from the feature extraction process is used as input to a Naive Bayes classifier (NBC) algorithm to train the model. In the real-time classification, a prediction of the scour depth affecting the structure is performed using a new dataset simulated from unseen load cases and scour conditions of the OWT. The results show that the model trained in the offline stage can predict the scour depth in the real-time monitoring stage with performance measures over approximately 94%.
期刊介绍:
This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.