Meta-analysis of transcriptomic profiles in Dunaliella tertiolecta reveals molecular pathway responses to different abiotic stresses.

IF 2.6 4区 生物学 Q2 PLANT SCIENCES
Bahman Panahi, Mohammad Farhadian, Nahid Hosseinzadeh Gharajeh, Seyyed Abolghasem Mohammadi, Mohammad Amin Hejazi
{"title":"Meta-analysis of transcriptomic profiles in <i>Dunaliella tertiolecta</i> reveals molecular pathway responses to different abiotic stresses.","authors":"Bahman Panahi, Mohammad Farhadian, Nahid Hosseinzadeh Gharajeh, Seyyed Abolghasem Mohammadi, Mohammad Amin Hejazi","doi":"10.1071/FP23002","DOIUrl":null,"url":null,"abstract":"<p><p>Microalgae are photosynthetic organisms and a potential source of sustainable metabolite production. However, different stress conditions might affect the production of various metabolites. In this study, a meta-analysis of RNA-seq experiments in Dunaliella tertiolecta was evaluated to compare metabolite biosynthesis pathways in response to abiotic stress conditions such as high light, nitrogen deficiency and high salinity. Results showed downregulation of light reaction, photorespiration, tetrapyrrole and lipid-related pathways occurred under salt stress. Nitrogen deficiency mostly induced the microalgal responses of light reaction and photorespiration metabolism. Phosphoenol pyruvate carboxylase, phosphoglucose isomerase, bisphosphoglycerate mutase and glucose-6-phosphate-1-dehydrogenase (involved in central carbon metabolism) were commonly upregulated under salt, light and nitrogen stresses. Interestingly, the results indicated that the meta-genes (modules of genes strongly correlated) were located in a hub of stress-specific protein-protein interaction (PPI) network. Module enrichment of meta-genes PPI networks highlighted the cross-talk between photosynthesis, fatty acids, starch and sucrose metabolism under multiple stress conditions. Moreover, it was observed that the coordinated expression of the tetrapyrrole intermediated with meta-genes was involved in starch biosynthesis. Our results also showed that the pathways of vitamin B6 metabolism, methane metabolism, ribosome biogenesis and folate biosynthesis responded specifically to different stress factors. Since the results of this study revealed the main pathways underlying the abiotic stress, they might be applied in optimised metabolite production by the microalga Dunaliella in future studies. PRISMA check list was also included in the study.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microalgae are photosynthetic organisms and a potential source of sustainable metabolite production. However, different stress conditions might affect the production of various metabolites. In this study, a meta-analysis of RNA-seq experiments in Dunaliella tertiolecta was evaluated to compare metabolite biosynthesis pathways in response to abiotic stress conditions such as high light, nitrogen deficiency and high salinity. Results showed downregulation of light reaction, photorespiration, tetrapyrrole and lipid-related pathways occurred under salt stress. Nitrogen deficiency mostly induced the microalgal responses of light reaction and photorespiration metabolism. Phosphoenol pyruvate carboxylase, phosphoglucose isomerase, bisphosphoglycerate mutase and glucose-6-phosphate-1-dehydrogenase (involved in central carbon metabolism) were commonly upregulated under salt, light and nitrogen stresses. Interestingly, the results indicated that the meta-genes (modules of genes strongly correlated) were located in a hub of stress-specific protein-protein interaction (PPI) network. Module enrichment of meta-genes PPI networks highlighted the cross-talk between photosynthesis, fatty acids, starch and sucrose metabolism under multiple stress conditions. Moreover, it was observed that the coordinated expression of the tetrapyrrole intermediated with meta-genes was involved in starch biosynthesis. Our results also showed that the pathways of vitamin B6 metabolism, methane metabolism, ribosome biogenesis and folate biosynthesis responded specifically to different stress factors. Since the results of this study revealed the main pathways underlying the abiotic stress, they might be applied in optimised metabolite production by the microalga Dunaliella in future studies. PRISMA check list was also included in the study.

邓氏藻转录组的元分析揭示了分子通路对不同非生物胁迫的响应。
微藻类是光合生物,是可持续代谢物生产的潜在来源。然而,不同的压力条件可能会影响各种代谢物的产生。本研究通过荟萃分析邓氏藻(Dunaliella tertiolecta)的RNA-seq实验,比较了代谢物生物合成途径对强光、缺氮和高盐度等非生物胁迫条件的响应。结果表明,在盐胁迫条件下,光反应、光呼吸、四吡咯和脂质相关途径发生下调。缺氮主要诱导微藻的光反应和光呼吸代谢反应。磷酸烯醇丙酮酸羧化酶、磷酸葡萄糖异构酶、双磷酸甘油酸突变酶和葡萄糖-6-磷酸-1-脱氢酶(参与中心碳代谢)在盐胁迫、光胁迫和氮胁迫下普遍上调。有趣的是,研究结果表明,元基因(高度相关的基因模块)位于胁迫特异性蛋白质-蛋白质相互作用(PPI)网络的中心。元基因 PPI 网络的模块富集突显了多种胁迫条件下光合作用、脂肪酸、淀粉和蔗糖代谢之间的交叉作用。此外,我们还观察到四吡咯中间体与元基因的协调表达参与了淀粉的生物合成。我们的研究结果还表明,维生素 B6 代谢、甲烷代谢、核糖体生物发生和叶酸生物合成的途径对不同胁迫因子有特异性响应。由于本研究的结果揭示了非生物胁迫的主要途径,因此在今后的研究中可能会应用于微藻杜纳利藻代谢物的优化生产。本研究还包括 PRISMA 检查清单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信