Mathematical modeling suggests heterogeneous replication of Mycobacterium tuberculosis in rabbits.

Vitaly V Ganusov, Afsal Kolloli, Selvakumar Subbian
{"title":"Mathematical modeling suggests heterogeneous replication of <i>Mycobacterium tuberculosis</i> in rabbits.","authors":"Vitaly V Ganusov, Afsal Kolloli, Selvakumar Subbian","doi":"10.1101/2024.02.07.579301","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberculosis (<b>TB</b>), the disease caused by <i>Mycobacterium tuberculosis</i> (<b>Mtb</b>), remains a major health problem with 10.6 million cases of the disease and 1.6 million deaths in 2021. It is well understood that pulmonary TB is due to Mtb growth in the lung but quantitative estimates of rates of Mtb replication and death in lungs of patients or animals such as monkeys or rabbits remain largely unknown. We performed experiments with rabbits infected with a novel, virulent clinical Mtb isolate of the Beijing lineage, HN878, carrying an unstable plasmid pBP10. In our in vitro experiments we found that pBP10 is more stable in HN878 strain than in a more commonly used laboratory-adapted Mtb strain H37Rv (the segregation coefficient being <i>s</i> = 0.10 in HN878 vs. <i>s</i> = 0.18 in H37Rv). Interestingly, the kinetics of plasmid-bearing bacteria in lungs of Mtb-infected rabbits did not follow an expected monotonic decline; the percent of plasmid-bearing cells increased between 28 and 56 days post-infection and remained stable between 84 and 112 days post-infection despite a large increase in bacterial numbers in the lung at late time points. Mathematical modeling suggested that such a non-monotonic change in the percent of plasmid-bearing cells can be explained if the lung Mtb population consists of several (at least 2) sub-populations with different replication/death kinetics: one major population expanding early and being controlled/eliminated, while another, a smaller population expanding at later times causing a counterintuitive increase in the percent of plasmid-bearing cells. Importantly, a model with one kinetically homogeneous Mtb population could not explain the data including when the model was run stochastically. Given that in rabbits HN878 strain forms well circumscribed granulomas, our results suggest independent bacterial dynamics in subsets of such granulomas. Our model predictions can be tested in future experiments in which HN878-pBP10 dynamics in individual granulomas is followed over time. Taken together, our new data and mathematical modeling-based analyses illustrate differences in Mtb dynamics in mice and rabbits confirming a perhaps somewhat obvious observation that \"rabbits are not mice\".</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10871370/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.02.07.579301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (Mtb), remains a major health problem with 10.6 million cases of the disease and 1.6 million deaths in 2021. It is well understood that pulmonary TB is due to Mtb growth in the lung but quantitative estimates of rates of Mtb replication and death in lungs of patients or animals such as monkeys or rabbits remain largely unknown. We performed experiments with rabbits infected with a novel, virulent clinical Mtb isolate of the Beijing lineage, HN878, carrying an unstable plasmid pBP10. In our in vitro experiments we found that pBP10 is more stable in HN878 strain than in a more commonly used laboratory-adapted Mtb strain H37Rv (the segregation coefficient being s = 0.10 in HN878 vs. s = 0.18 in H37Rv). Interestingly, the kinetics of plasmid-bearing bacteria in lungs of Mtb-infected rabbits did not follow an expected monotonic decline; the percent of plasmid-bearing cells increased between 28 and 56 days post-infection and remained stable between 84 and 112 days post-infection despite a large increase in bacterial numbers in the lung at late time points. Mathematical modeling suggested that such a non-monotonic change in the percent of plasmid-bearing cells can be explained if the lung Mtb population consists of several (at least 2) sub-populations with different replication/death kinetics: one major population expanding early and being controlled/eliminated, while another, a smaller population expanding at later times causing a counterintuitive increase in the percent of plasmid-bearing cells. Importantly, a model with one kinetically homogeneous Mtb population could not explain the data including when the model was run stochastically. Given that in rabbits HN878 strain forms well circumscribed granulomas, our results suggest independent bacterial dynamics in subsets of such granulomas. Our model predictions can be tested in future experiments in which HN878-pBP10 dynamics in individual granulomas is followed over time. Taken together, our new data and mathematical modeling-based analyses illustrate differences in Mtb dynamics in mice and rabbits confirming a perhaps somewhat obvious observation that "rabbits are not mice".

数学模型表明兔子体内结核分枝杆菌的异质复制。
结核病(TB)是由结核分枝杆菌(Mtb)引起的疾病,目前仍是一个主要的健康问题,2021 年将有 1060 万病例,160 万人死亡。众所周知,肺结核是由肺部的 Mtb 复制引起的,但患者肺部 Mtb 复制和死亡的定量细节以及这些比率与肺部病变程度的关系尚不清楚。我们用兔子感染了携带不稳定质粒 pBP10 的北京系新型毒性临床 Mtb 分离物 HN878 进行了实验。在体外实验中,我们发现 pBP10 在 HN878 菌株中比在更常用的实验室改良 Mtb 菌株 H37Rv 中更稳定(分离系数在 HN878 中为 s = 0.10,而在 H37Rv 中为 s = 0.18)。有趣的是,受 Mtb 感染的兔子肺中携带质粒的细菌的动力学并不遵循预期的单调下降规律;在感染后 28 天至 56 天期间,携带质粒的细胞百分比有所增加,在感染后 84 天至 112 天期间保持稳定,尽管在晚期时间点肺中的细菌数量大幅增加。数学模型表明,如果肺部 Mtb 群体由几个(至少两个)具有不同复制/死亡动力学的亚群体组成,那么就可以解释带质粒细胞百分比的这种非单调变化:一个主要群体在早期扩大并被控制/消灭,而另一个较小的群体则在后期扩大,从而导致带质粒细胞百分比的反直觉增加。鉴于 HN878 会在兔子体内形成周界清晰的肉芽肿,我们的结果表明这种肉芽肿的子集中存在独立的细菌动态。我们的模型预测可以在未来的实验中得到验证,在这些实验中,将对单个肉芽肿中 HN878-pBP10 的动态进行长期跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信