Prediction of the SYM‐H Index Using a Bayesian Deep Learning Method With Uncertainty Quantification

Space Weather Pub Date : 2024-02-01 DOI:10.1029/2023sw003824
Yasser Abduallah, Khalid A. Alobaid, Jason T. L. Wang, Haimin Wang, V. Jordanova, Vasyl Yurchyshyn, Huseyin Cavus, Ju Jing
{"title":"Prediction of the SYM‐H Index Using a Bayesian Deep Learning Method With Uncertainty Quantification","authors":"Yasser Abduallah, Khalid A. Alobaid, Jason T. L. Wang, Haimin Wang, V. Jordanova, Vasyl Yurchyshyn, Huseyin Cavus, Ju Jing","doi":"10.1029/2023sw003824","DOIUrl":null,"url":null,"abstract":"We propose a novel deep learning framework, named SYMHnet, which employs a graph neural network and a bidirectional long short‐term memory network to cooperatively learn patterns from solar wind and interplanetary magnetic field parameters for short‐term forecasts of the SYM‐H index based on 1‐ and 5‐min resolution data. SYMHnet takes, as input, the time series of the parameters' values provided by NASA's Space Science Data Coordinated Archive and predicts, as output, the SYM‐H index value at time point t + w hours for a given time point t where w is 1 or 2. By incorporating Bayesian inference into the learning framework, SYMHnet can quantify both aleatoric (data) uncertainty and epistemic (model) uncertainty when predicting future SYM‐H indices. Experimental results show that SYMHnet works well at quiet time and storm time, for both 1‐ and 5‐min resolution data. The results also show that SYMHnet generally performs better than related machine learning methods. For example, SYMHnet achieves a forecast skill score (FSS) of 0.343 compared to the FSS of 0.074 of a recent gradient boosting machine (GBM) method when predicting SYM‐H indices (1 hr in advance) in a large storm (SYM‐H = −393 nT) using 5‐min resolution data. When predicting the SYM‐H indices (2 hr in advance) in the large storm, SYMHnet achieves an FSS of 0.553 compared to the FSS of 0.087 of the GBM method. In addition, SYMHnet can provide results for both data and model uncertainty quantification, whereas the related methods cannot.","PeriodicalId":510519,"journal":{"name":"Space Weather","volume":"124 1-3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023sw003824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel deep learning framework, named SYMHnet, which employs a graph neural network and a bidirectional long short‐term memory network to cooperatively learn patterns from solar wind and interplanetary magnetic field parameters for short‐term forecasts of the SYM‐H index based on 1‐ and 5‐min resolution data. SYMHnet takes, as input, the time series of the parameters' values provided by NASA's Space Science Data Coordinated Archive and predicts, as output, the SYM‐H index value at time point t + w hours for a given time point t where w is 1 or 2. By incorporating Bayesian inference into the learning framework, SYMHnet can quantify both aleatoric (data) uncertainty and epistemic (model) uncertainty when predicting future SYM‐H indices. Experimental results show that SYMHnet works well at quiet time and storm time, for both 1‐ and 5‐min resolution data. The results also show that SYMHnet generally performs better than related machine learning methods. For example, SYMHnet achieves a forecast skill score (FSS) of 0.343 compared to the FSS of 0.074 of a recent gradient boosting machine (GBM) method when predicting SYM‐H indices (1 hr in advance) in a large storm (SYM‐H = −393 nT) using 5‐min resolution data. When predicting the SYM‐H indices (2 hr in advance) in the large storm, SYMHnet achieves an FSS of 0.553 compared to the FSS of 0.087 of the GBM method. In addition, SYMHnet can provide results for both data and model uncertainty quantification, whereas the related methods cannot.
利用贝叶斯深度学习方法和不确定性量化预测 SYM-H 指数
我们提出了一种名为 SYMHnet 的新型深度学习框架,该框架采用图神经网络和双向长短期记忆网络,从太阳风和行星际磁场参数中合作学习模式,用于基于 1 分钟和 5 分钟分辨率数据的 SYM-H 指数短期预测。SYMHnet 将美国国家航空航天局空间科学数据协调档案提供的参数值时间序列作为输入,并将给定时间点 t + w 小时的 SYM-H 指数值(w 为 1 或 2)作为输出进行预测。通过将贝叶斯推理纳入学习框架,SYMHnet 可以在预测未来 SYM-H 指数时量化数据(数据)的不确定性和认识(模型)的不确定性。实验结果表明,对于 1 分钟和 5 分钟分辨率的数据,SYMHnet 在静风时间和暴风时间都运行良好。实验结果还表明,SYMHnet 的性能普遍优于相关的机器学习方法。例如,在使用 5 分钟分辨率数据预测大风暴(SYM-H = -393nT)中的 SYM-H 指数(提前 1 小时)时,SYMHnet 的预测技能得分(FSS)为 0.343,而最近的梯度提升机(GBM)方法的预测技能得分(FSS)为 0.074。在预测大风暴中的 SYM-H 指数(提前 2 小时)时,SYMHnet 的 FSS 为 0.553,而 GBM 方法的 FSS 为 0.087。此外,SYMHnet 还能提供数据和模型不确定性量化结果,而相关方法则不能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信