{"title":"Employing the Microemulsion Synthesis Technique to Investigate the Structural and Magnetic Properties of Multicomponent Ferrite Nanoparticles","authors":"Sanjeev Kumar, Shivangi Singhal, Avaani Chanana","doi":"10.1002/crat.202300269","DOIUrl":null,"url":null,"abstract":"<p>CoFe<sub>2</sub>O<sub>4</sub>, ZnFe<sub>2</sub>O<sub>4</sub>, NiFe<sub>2</sub>O<sub>4</sub>, Co<sub>0.5</sub>Ni<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub>, Ni<sub>0.5</sub>Zn<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub>, and Co<sub>0.5</sub>Zn<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> are among the multicomponent ferrite nanoparticles that are created using the reverse microemulsion technique and a mixed surfactant. These nanoparticles are thoroughly characterized using techniques such as vibrating sample magnetometer (VSM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). All the nanoparticles display a cubic spinel crystal structure, according to the X-ray investigation. As the concentration of zinc increases, there is a noticeable rise in the lattice constant because the size of Zn+2 is more than Co+2. This study also investigates the relationship between the magnetic characteristics of nanocrystals and their matching size, composition, and features.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202300269","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
CoFe2O4, ZnFe2O4, NiFe2O4, Co0.5Ni0.5Fe2O4, Ni0.5Zn0.5Fe2O4, and Co0.5Zn0.5Fe2O4 are among the multicomponent ferrite nanoparticles that are created using the reverse microemulsion technique and a mixed surfactant. These nanoparticles are thoroughly characterized using techniques such as vibrating sample magnetometer (VSM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). All the nanoparticles display a cubic spinel crystal structure, according to the X-ray investigation. As the concentration of zinc increases, there is a noticeable rise in the lattice constant because the size of Zn+2 is more than Co+2. This study also investigates the relationship between the magnetic characteristics of nanocrystals and their matching size, composition, and features.
CoFe2O4、ZnFe2O4、NiFe2O4、Co0.5Ni0.5Fe2O4、Ni0.5Zn0.5Fe2O4 和 Co0.5Zn0.5Fe2O4 是利用反向微乳技术和混合表面活性剂制造的多组分铁氧体纳米粒子。利用振动样品磁力计(VSM)、能量色散 X 射线光谱(EDS)、傅立叶变换红外光谱(FT-IR)和 X 射线衍射(XRD)等技术对这些纳米粒子进行了全面表征。根据 X 射线研究,所有纳米粒子都显示出立方尖晶石晶体结构。随着锌浓度的增加,晶格常数明显上升,因为 Zn+2 的尺寸大于 Co+2。这项研究还探讨了纳米晶体的磁性特征与其匹配尺寸、组成和特征之间的关系。
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing