{"title":"Aβ-mediated synaptic glutamate dynamics and calcium dynamics in astrocytes associated with Alzheimer’s disease","authors":"YuPeng Li, XiaoLi Yang","doi":"10.1007/s11571-024-10064-6","DOIUrl":null,"url":null,"abstract":"<p>The accumulation of amyloid <i>β</i> peptide <span>\\(\\left( {\\text{A}}\\beta \\right) \\)</span> is assumed to be one of the main causes of Alzheimer’s disease <span>\\(\\left( {\\text{AD}}\\right) \\)</span>. There is increasing evidence that astrocytes are the primary targets of A<i>β</i>. A<i>β</i> can cause abnormal synaptic glutamate, aberrant extrasynaptic glutamate, and astrocytic calcium dysregulation through astrocyte glutamate transporters facing the synaptic cleft (GLT-syn), astrocyte glutamate transporters facing the extrasynaptic space (GLT-ess), metabotropic glutamate receptors in astrocytes (mGluR), N-methyl-D-aspartate receptors in astrocytes (NMDAR), and glutamatergic gliotransmitter release (Glio-Rel). However, it is difficult to experimentally identify the extent to which each pathway affects synaptic glutamate, extrasynaptic glutamate, and astrocytic calcium signaling. Motivated by these findings, this work established a concise mathematical model of astrocyte <span>\\({\\text{Ca}}^{2+}\\)</span> dynamics, including the above A<i>β</i>-mediated glutamate-related multiple pathways. The model results presented the extent to which five mechanisms acted upon by A<i>β</i> affect synaptic glutamate, extrasynaptic glutamate, and astrocytic intracellular <span>\\({\\text{Ca}}^{2+}\\)</span> signals. We found that GLT-syn is the main pathway through which A<i>β</i> affects synaptic glutamate. GLT-ess and Glio-Rel are the main pathways through which A<span>\\(\\beta \\)</span> affects extrasynaptic glutamate. GLT-syn, mGluR, and NMDAR are the main pathways through which A<i>β</i> affects astrocytic intracellular <span>\\({\\text{Ca}}^{2+}\\)</span> signals. Additionally, we discovered a strong, monotonically increasing relationship between the mean glutamate concentration and the mean <span>\\({\\text{Ca}}^{2+}\\)</span> oscillation amplitude (or frequency). Our results may have therapeutic implications for slowing cell death induced by the combination of glutamate imbalance and <span>\\({\\text{Ca}}^{2+}\\)</span> dysregulation in AD.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"24 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10064-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The accumulation of amyloid β peptide \(\left( {\text{A}}\beta \right) \) is assumed to be one of the main causes of Alzheimer’s disease \(\left( {\text{AD}}\right) \). There is increasing evidence that astrocytes are the primary targets of Aβ. Aβ can cause abnormal synaptic glutamate, aberrant extrasynaptic glutamate, and astrocytic calcium dysregulation through astrocyte glutamate transporters facing the synaptic cleft (GLT-syn), astrocyte glutamate transporters facing the extrasynaptic space (GLT-ess), metabotropic glutamate receptors in astrocytes (mGluR), N-methyl-D-aspartate receptors in astrocytes (NMDAR), and glutamatergic gliotransmitter release (Glio-Rel). However, it is difficult to experimentally identify the extent to which each pathway affects synaptic glutamate, extrasynaptic glutamate, and astrocytic calcium signaling. Motivated by these findings, this work established a concise mathematical model of astrocyte \({\text{Ca}}^{2+}\) dynamics, including the above Aβ-mediated glutamate-related multiple pathways. The model results presented the extent to which five mechanisms acted upon by Aβ affect synaptic glutamate, extrasynaptic glutamate, and astrocytic intracellular \({\text{Ca}}^{2+}\) signals. We found that GLT-syn is the main pathway through which Aβ affects synaptic glutamate. GLT-ess and Glio-Rel are the main pathways through which A\(\beta \) affects extrasynaptic glutamate. GLT-syn, mGluR, and NMDAR are the main pathways through which Aβ affects astrocytic intracellular \({\text{Ca}}^{2+}\) signals. Additionally, we discovered a strong, monotonically increasing relationship between the mean glutamate concentration and the mean \({\text{Ca}}^{2+}\) oscillation amplitude (or frequency). Our results may have therapeutic implications for slowing cell death induced by the combination of glutamate imbalance and \({\text{Ca}}^{2+}\) dysregulation in AD.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.