Modeling thermally driven migration of brine in bedded salt

IF 3.3 2区 工程技术 Q3 ENERGY & FUELS
Hua Shao , Jürgen Hesser , Wenqing Wang , Olaf Kolditz
{"title":"Modeling thermally driven migration of brine in bedded salt","authors":"Hua Shao ,&nbsp;Jürgen Hesser ,&nbsp;Wenqing Wang ,&nbsp;Olaf Kolditz","doi":"10.1016/j.gete.2024.100542","DOIUrl":null,"url":null,"abstract":"<div><p>Stress redistribution after the excavation of a drift leads to the generation of an Ed/DZ (excavation disturbed/damaged zone) in the near field of an opening, with significant changes in the hydraulic and mechanical properties. Further changes can occur under thermal load during the heating period in the post-closure phase of a repository for high-level radioactive waste. Initially more or less randomly distributed intragranular and intergranular fluid in a low-permeability sedimentary rock such as bedded or domed salt can then be mobilised and migrated under the altered hydro-mechanical and the coupled thermo-hydro-mechanical-chemical conditions at a potentially significant rate towards the excavation. To investigate the fluid migration behaviour, a test program BATS (Brine Availability Test in Salt) was carried out as a collaboration between Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and Lawrence Berkeley National Laboratory (LBNL) for US Department of Energy Office of Nuclear Energy in the underground facility WIPP (Waste Isolation Pilot Plant), Carlsbad, NM. Within the international cooperative project DECOVALEX-2023, data from the BATS experiment was systematically analysed by international teams using different model concept. Based on the multi-scale modelling strategy developed during DECOVALEX-2019, the BGR/UFZ team is analysing different type of measured data, including the inflow from the Small-Scale Brine Inflow test, the permeability distribution around the excavation from the Small-Scale Mine-by experiment, and the temperature evolution and inflow from the BATS experiment. The zone of enhanced permeability after excavation, which builds the main pathway for the inflow, is approximately 2.5 times the opening radius. The distribution of the permeability in the near-field around an opening can be well predicted by a failure-index based permeability model. Using the thermo-hydro-elastic model taking into account the creep behaviour of the rock salt, a reasonable prediction of inflow can be obtained under heated and unheated conditions. The flow pattern under heated conditions is characterized by an increase in permeability for BATS 1a and a decrease in the pressure gradient for 1b. The observation of a ‘spike’ behaviour after turning-off the power in the experiment can be explained on a microscale by the cooling contraction of the salt crystal, which leads to a 2 OOMs (order of magnitude) increase in permeability due to tensile stress, but only at high pore pressure and for a short time.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"38 ","pages":"Article 100542"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380824000091/pdfft?md5=2ab654995c5389b2b9172e8ef2806cb6&pid=1-s2.0-S2352380824000091-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000091","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Stress redistribution after the excavation of a drift leads to the generation of an Ed/DZ (excavation disturbed/damaged zone) in the near field of an opening, with significant changes in the hydraulic and mechanical properties. Further changes can occur under thermal load during the heating period in the post-closure phase of a repository for high-level radioactive waste. Initially more or less randomly distributed intragranular and intergranular fluid in a low-permeability sedimentary rock such as bedded or domed salt can then be mobilised and migrated under the altered hydro-mechanical and the coupled thermo-hydro-mechanical-chemical conditions at a potentially significant rate towards the excavation. To investigate the fluid migration behaviour, a test program BATS (Brine Availability Test in Salt) was carried out as a collaboration between Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and Lawrence Berkeley National Laboratory (LBNL) for US Department of Energy Office of Nuclear Energy in the underground facility WIPP (Waste Isolation Pilot Plant), Carlsbad, NM. Within the international cooperative project DECOVALEX-2023, data from the BATS experiment was systematically analysed by international teams using different model concept. Based on the multi-scale modelling strategy developed during DECOVALEX-2019, the BGR/UFZ team is analysing different type of measured data, including the inflow from the Small-Scale Brine Inflow test, the permeability distribution around the excavation from the Small-Scale Mine-by experiment, and the temperature evolution and inflow from the BATS experiment. The zone of enhanced permeability after excavation, which builds the main pathway for the inflow, is approximately 2.5 times the opening radius. The distribution of the permeability in the near-field around an opening can be well predicted by a failure-index based permeability model. Using the thermo-hydro-elastic model taking into account the creep behaviour of the rock salt, a reasonable prediction of inflow can be obtained under heated and unheated conditions. The flow pattern under heated conditions is characterized by an increase in permeability for BATS 1a and a decrease in the pressure gradient for 1b. The observation of a ‘spike’ behaviour after turning-off the power in the experiment can be explained on a microscale by the cooling contraction of the salt crystal, which leads to a 2 OOMs (order of magnitude) increase in permeability due to tensile stress, but only at high pore pressure and for a short time.

盐层中盐水的热驱动迁移建模
开挖漂流物后的应力再分布会导致在开口附近区域产生一个 Ed/DZ(开挖扰动/损坏区),使水力和机械特性发生显著变化。在高放射性废物处置库关闭后的加热阶段,在热负荷作用下还会发生进一步的变化。低渗透性沉积岩(如层状或穹隆状盐)中最初或多或少随机分布的粒内和粒间流体,在改变的水力机械和热力-水力-机械-化学耦合条件下,可能会以显著的速度向挖掘口迁移。为了研究流体迁移行为,桑迪亚国家实验室(SNL)、洛斯阿拉莫斯国家实验室(LANL)和劳伦斯伯克利国家实验室(LBNL)与美国能源部核能办公室合作,在位于新墨西哥州卡尔斯巴德的地下设施 WIPP(废物隔离试验厂)中开展了 BATS(盐中盐水可用性测试)试验项目。在 DECOVALEX-2023 国际合作项目中,国际团队使用不同的模型概念对 BATS 试验的数据进行了系统分析。基于 DECOVALEX-2019 期间开发的多尺度建模策略,BGR/UFZ 团队正在分析不同类型的测量数据,包括小尺度盐水流入试验的流入量、小尺度逐矿试验的开挖周围渗透率分布以及 BATS 试验的温度变化和流入量。挖掘后的渗透性增强区是流入的主要通道,约为开口半径的 2.5 倍。基于失效指数的渗透率模型可以很好地预测开口周围近场的渗透率分布。利用考虑到岩盐蠕变行为的热-水-弹性模型,可以合理预测加热和非加热条件下的流入量。加热条件下的流动模式特点是 BATS 1a 的渗透率增加,1b 的压力梯度减小。在实验中观察到的关闭电源后的 "尖峰 "现象,在微观上可以解释为盐晶体的冷却收缩,由于拉伸应力,导致渗透率增加了 2 OOMs(数量级),但只是在孔隙压力较高且时间较短的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomechanics for Energy and the Environment
Geomechanics for Energy and the Environment Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
11.80%
发文量
87
期刊介绍: The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources. The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信