Understanding Ability and Reliability Differences Measured with Count Items: The Distributional Regression Test Model and the Count Latent Regression Model.

IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Multivariate Behavioral Research Pub Date : 2024-05-01 Epub Date: 2024-02-13 DOI:10.1080/00273171.2023.2288577
Marie Beisemann, Boris Forthmann, Philipp Doebler
{"title":"Understanding Ability and Reliability Differences Measured with Count Items: The Distributional Regression Test Model and the Count Latent Regression Model.","authors":"Marie Beisemann, Boris Forthmann, Philipp Doebler","doi":"10.1080/00273171.2023.2288577","DOIUrl":null,"url":null,"abstract":"<p><p>In psychology and education, tests (e.g., reading tests) and self-reports (e.g., clinical questionnaires) generate counts, but corresponding Item Response Theory (IRT) methods are underdeveloped compared to binary data. Recent advances include the Two-Parameter Conway-Maxwell-Poisson model (2PCMPM), generalizing Rasch's Poisson Counts Model, with item-specific difficulty, discrimination, and dispersion parameters. Explaining differences in model parameters informs item construction and selection but has received little attention. We introduce two 2PCMPM-based explanatory count IRT models: The Distributional Regression Test Model for item covariates, and the Count Latent Regression Model for (categorical) person covariates. Estimation methods are provided and satisfactory statistical properties are observed in simulations. Two examples illustrate how the models help understand tests and underlying constructs.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"502-522"},"PeriodicalIF":5.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2023.2288577","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In psychology and education, tests (e.g., reading tests) and self-reports (e.g., clinical questionnaires) generate counts, but corresponding Item Response Theory (IRT) methods are underdeveloped compared to binary data. Recent advances include the Two-Parameter Conway-Maxwell-Poisson model (2PCMPM), generalizing Rasch's Poisson Counts Model, with item-specific difficulty, discrimination, and dispersion parameters. Explaining differences in model parameters informs item construction and selection but has received little attention. We introduce two 2PCMPM-based explanatory count IRT models: The Distributional Regression Test Model for item covariates, and the Count Latent Regression Model for (categorical) person covariates. Estimation methods are provided and satisfactory statistical properties are observed in simulations. Two examples illustrate how the models help understand tests and underlying constructs.

理解用计数项目测量的能力和可靠性差异:分布回归测试模型和计数潜回归模型。
在心理学和教育学中,测验(如阅读测验)和自我报告(如临床问卷)会产生计数,但与二进制数据相比,相应的项目反应理论(IRT)方法还不够完善。最近的进展包括双参数康威-麦克斯韦-泊松模型(2PCMPM),它是对拉施的泊松计数模型的推广,具有特定项目的难度、区分度和离散度参数。解释模型参数的差异可为项目构建和选择提供信息,但却很少受到关注。我们介绍了两个基于 2PCMPM 的解释性计数 IRT 模型:针对项目协变量的分布回归测试模型和针对(分类)人协变量的计数潜回归模型。提供了估计方法,并通过模拟观察到了令人满意的统计特性。两个例子说明了这些模型如何帮助理解测验和基本结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信