Machine learning for membrane design in energy production, gas separation, and water treatment: a review

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ahmed I. Osman, Mahmoud Nasr, Mohamed Farghali, Sara S. Bakr, Abdelazeem S. Eltaweil, Ahmed K. Rashwan, Eman M. Abd El-Monaem
{"title":"Machine learning for membrane design in energy production, gas separation, and water treatment: a review","authors":"Ahmed I. Osman,&nbsp;Mahmoud Nasr,&nbsp;Mohamed Farghali,&nbsp;Sara S. Bakr,&nbsp;Abdelazeem S. Eltaweil,&nbsp;Ahmed K. Rashwan,&nbsp;Eman M. Abd El-Monaem","doi":"10.1007/s10311-023-01695-y","DOIUrl":null,"url":null,"abstract":"<div><p>Membrane filtration is a major process used in the energy, gas separation, and water treatment sectors, yet the efficiency of current membranes is limited. Here, we review the use of machine learning to improve membrane efficiency, with emphasis on reverse osmosis, nanofiltration, pervaporation, removal of pollutants, pathogens and nutrients, gas separation of carbon dioxide, oxygen and hydrogen, fuel cells, biodiesel, and biogas purification. We found that the use of machine learning brings substantial improvements in performance and efficiency, leading to specialized membranes with remarkable potential for various applications. This integration offers versatile solutions crucial for addressing global challenges in sustainable development and advancing environmental goals. Membrane gas separation techniques improve carbon capture and purification of industrial gases, aiding in the reduction of carbon dioxide emissions.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 2","pages":"505 - 560"},"PeriodicalIF":15.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-023-01695-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-023-01695-y","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane filtration is a major process used in the energy, gas separation, and water treatment sectors, yet the efficiency of current membranes is limited. Here, we review the use of machine learning to improve membrane efficiency, with emphasis on reverse osmosis, nanofiltration, pervaporation, removal of pollutants, pathogens and nutrients, gas separation of carbon dioxide, oxygen and hydrogen, fuel cells, biodiesel, and biogas purification. We found that the use of machine learning brings substantial improvements in performance and efficiency, leading to specialized membranes with remarkable potential for various applications. This integration offers versatile solutions crucial for addressing global challenges in sustainable development and advancing environmental goals. Membrane gas separation techniques improve carbon capture and purification of industrial gases, aiding in the reduction of carbon dioxide emissions.

能源生产、气体分离和水处理中膜设计的机器学习:综述
摘要 膜过滤是能源、气体分离和水处理领域的主要工艺,但目前膜的效率有限。在此,我们回顾了利用机器学习提高膜效率的情况,重点是反渗透、纳滤、渗透蒸发、去除污染物、病原体和营养物质、二氧化碳、氧气和氢气的气体分离、燃料电池、生物柴油和沼气净化。我们发现,机器学习的使用大大提高了性能和效率,使专用膜在各种应用中具有显著的潜力。这种整合为应对可持续发展的全球挑战和推进环境目标提供了至关重要的多功能解决方案。膜气体分离技术可改善工业气体的碳捕获和净化,有助于减少二氧化碳排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信