{"title":"Using a quantitative assessment of propulsion biomechanics in wheelchair racing to guide the design of personalized gloves: a case study.","authors":"Félix Chénier, Gerald Parent, Mikaël Leblanc, Colombe Bélaise, Mathieu Andrieux","doi":"10.1080/10255842.2024.2311324","DOIUrl":null,"url":null,"abstract":"<p><p>This study with a T-52 class wheelchair racing athlete aimed to combine quantitative biomechanical measurements to the athlete's perception to design and test different prototypes of a new kind of rigid gloves. Three personalized rigid gloves with various, fixed wrist extension angles were prototyped and tested on a treadmill in a biomechanics laboratory. The prototype with 45° wrist extension was the athlete's favourite as it reduced his perception of effort. Biomechanical assessment and user-experience data indicated that his favourite prototype increased wrist stability throughout the propulsion cycle while maintaining a very similar propulsion technique to the athlete's prior soft gloves. Moreover, the inclusion of an innovative attachment system on the new gloves allowed the athlete to put his gloves on by himself, eliminating the need for external assistance and thus significantly increasing his autonomy. This multidisciplinary approach helped to prototype and develop a new rigid personalized gloves concept and is clearly a promising avenue to tailor adaptive sports equipment to an athlete's needs.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1398-1408"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2311324","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study with a T-52 class wheelchair racing athlete aimed to combine quantitative biomechanical measurements to the athlete's perception to design and test different prototypes of a new kind of rigid gloves. Three personalized rigid gloves with various, fixed wrist extension angles were prototyped and tested on a treadmill in a biomechanics laboratory. The prototype with 45° wrist extension was the athlete's favourite as it reduced his perception of effort. Biomechanical assessment and user-experience data indicated that his favourite prototype increased wrist stability throughout the propulsion cycle while maintaining a very similar propulsion technique to the athlete's prior soft gloves. Moreover, the inclusion of an innovative attachment system on the new gloves allowed the athlete to put his gloves on by himself, eliminating the need for external assistance and thus significantly increasing his autonomy. This multidisciplinary approach helped to prototype and develop a new rigid personalized gloves concept and is clearly a promising avenue to tailor adaptive sports equipment to an athlete's needs.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.