Shovon Chandra Sarkar, Stephen Paul Milroy, Wei Xu
{"title":"Dietary experience alters predatory behavior of two ladybird species on tomato potato psyllid.","authors":"Shovon Chandra Sarkar, Stephen Paul Milroy, Wei Xu","doi":"10.1111/1744-7917.13328","DOIUrl":null,"url":null,"abstract":"<p><p>The tomato potato psyllid, Bactericera cockerelli, is an invasive pest in Australia, which can cause severe economic loss in the production of Solanaceous crops. As an invasive pest, B. cockerelli may also modify biotic interactions in Australian agricultural and native ecosystems. Resident generalist predators in an area may have the ability to utilize invasive pest species as prey but this will depend on their specific predatory behavior. The extent to which generalist predators learn from their previous dietary experience (i.e., whether they have used a particular species as prey before) and how this impacts subsequent prey choice will influence predator and prey population dynamics after invasion. In this study, one nonnative resident ladybird, Hippodamia variegata, and one native ladybird, Coccinella transversalis, were investigated. Dietary experience with B. cockerelli as a prey species significantly increased preference for the psyllid in a short term (6 h) Petri dish study where a choice of prey was given. Greater suppression of B. cockerelli populations by experienced ladybirds was also observed on glasshouse grown tomato plants. This was presumably due to altered prey recognition by experience. The result of this study suggest the potential to improve the impact of biological control agents on invasive pests by providing early life experience consuming the target species. It may prove valuable for developing improved augmentative release strategies for ladybirds to manage specific insect pest species.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1579-1590"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13328","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The tomato potato psyllid, Bactericera cockerelli, is an invasive pest in Australia, which can cause severe economic loss in the production of Solanaceous crops. As an invasive pest, B. cockerelli may also modify biotic interactions in Australian agricultural and native ecosystems. Resident generalist predators in an area may have the ability to utilize invasive pest species as prey but this will depend on their specific predatory behavior. The extent to which generalist predators learn from their previous dietary experience (i.e., whether they have used a particular species as prey before) and how this impacts subsequent prey choice will influence predator and prey population dynamics after invasion. In this study, one nonnative resident ladybird, Hippodamia variegata, and one native ladybird, Coccinella transversalis, were investigated. Dietary experience with B. cockerelli as a prey species significantly increased preference for the psyllid in a short term (6 h) Petri dish study where a choice of prey was given. Greater suppression of B. cockerelli populations by experienced ladybirds was also observed on glasshouse grown tomato plants. This was presumably due to altered prey recognition by experience. The result of this study suggest the potential to improve the impact of biological control agents on invasive pests by providing early life experience consuming the target species. It may prove valuable for developing improved augmentative release strategies for ladybirds to manage specific insect pest species.
期刊介绍:
Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.