{"title":"Machine Learning Assisted Metal Oxide-Bismuth Oxy Halide Nanocomposite for Electrochemical Sensing of Heavy Metals in Aqueous Media","authors":"Vijayalakshmi Kailasam, Radha Sankararajan, Muthumeenakshi Kailasam, Sreeja Balakrishnapillai Suseela","doi":"10.1002/crat.202300173","DOIUrl":null,"url":null,"abstract":"<p>Heavy metal in excess quantity is one of the major inorganic pollutants in water. It causes several hazards to human life and ecosystem. It exists in traces in most of the commonly available drinking water sources from lakes, ponds, wells, etc., However, their presence in treated water is relatively significant. As the treated water is primarily used for agricultural purposes, it is necessary to monitor and measure their concentration. This requires sensing of metals in aqueous medium with good sensitivity and stability. Recently, nanosensors coupled with electrochemical transducer is preferred for analyzing heavy metal in aqueous solutions. In this work, Silver oxide-bismuth oxy bromide coated with nafion is proposed as an electrochemical sensor for detection of heavy metal ions in aqueous solution. Cyclic voltammetry (CV) behavior of the proposed electrode is observed in different electrolytes. Further, Differential Pulse Voltammetry (DPV) study shows that current increases with trace nickel and copper metal ions of different concentration. Further, machine learning (ML) algorithms such as Naïve Bayes, ANN, SVM and decision trees are employed for nickel ions to train the cyclic voltammetry data and evaluate its performance. Naïve Bayes algorithm provides the best accuracy of 93.2% among all the models.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202300173","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metal in excess quantity is one of the major inorganic pollutants in water. It causes several hazards to human life and ecosystem. It exists in traces in most of the commonly available drinking water sources from lakes, ponds, wells, etc., However, their presence in treated water is relatively significant. As the treated water is primarily used for agricultural purposes, it is necessary to monitor and measure their concentration. This requires sensing of metals in aqueous medium with good sensitivity and stability. Recently, nanosensors coupled with electrochemical transducer is preferred for analyzing heavy metal in aqueous solutions. In this work, Silver oxide-bismuth oxy bromide coated with nafion is proposed as an electrochemical sensor for detection of heavy metal ions in aqueous solution. Cyclic voltammetry (CV) behavior of the proposed electrode is observed in different electrolytes. Further, Differential Pulse Voltammetry (DPV) study shows that current increases with trace nickel and copper metal ions of different concentration. Further, machine learning (ML) algorithms such as Naïve Bayes, ANN, SVM and decision trees are employed for nickel ions to train the cyclic voltammetry data and evaluate its performance. Naïve Bayes algorithm provides the best accuracy of 93.2% among all the models.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing