{"title":"Finite-element simulation of residual stresses induced by laser shock peening in TC4 samples structurally similar to a turbine blade","authors":"Anastasiia Kostina, Maxim Zhelnin, Sathya Swaroop, Alena Vedernikova, Mariia Bartolomei","doi":"10.3221/igf-esis.67.01","DOIUrl":null,"url":null,"abstract":"This study is devoted to the investigation of residual stresses distribution (RSD) in a TC4 sample treated with laser shock peening. The study placed special emphasis on analyzing the RSD at the part of the samples structurally similar to a turbine blade, which is more frequently subjected to damage during service according to the aircraft statistics. Results of simulation showed that low power density of 1.11 GWt/cm2 could not induce compressive residual stress on the surface of a treated object. Furthermore, increasing the overlapping of laser spots does not improve the situation and still fail to induce surface compressive residual stress at a laser intensity of 1.11 GWt/cm2. The compressive stresses occur only with the rise in power density. Reducing the spot size from 3 mm to 1 mm for the power density of 10 GWt/cm2 results in a 20% increase in the magnitude of compressive residual stress in the area of interest. Moreover, applying 35% overlapping further enhances this value. In addition to increasing the magnitude of residual stress, this approach also leads to a more homogeneous RSD of the treated material.","PeriodicalId":507970,"journal":{"name":"Frattura ed Integrità Strutturale","volume":"61 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frattura ed Integrità Strutturale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.67.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study is devoted to the investigation of residual stresses distribution (RSD) in a TC4 sample treated with laser shock peening. The study placed special emphasis on analyzing the RSD at the part of the samples structurally similar to a turbine blade, which is more frequently subjected to damage during service according to the aircraft statistics. Results of simulation showed that low power density of 1.11 GWt/cm2 could not induce compressive residual stress on the surface of a treated object. Furthermore, increasing the overlapping of laser spots does not improve the situation and still fail to induce surface compressive residual stress at a laser intensity of 1.11 GWt/cm2. The compressive stresses occur only with the rise in power density. Reducing the spot size from 3 mm to 1 mm for the power density of 10 GWt/cm2 results in a 20% increase in the magnitude of compressive residual stress in the area of interest. Moreover, applying 35% overlapping further enhances this value. In addition to increasing the magnitude of residual stress, this approach also leads to a more homogeneous RSD of the treated material.