Megan N. Moran, D. B. Jones, S. A. Jensen, R. Marcoli, D. R. Jerry
{"title":"Optimising commercial traits through gene editing in aquaculture: Strategies for accelerating genetic improvement","authors":"Megan N. Moran, D. B. Jones, S. A. Jensen, R. Marcoli, D. R. Jerry","doi":"10.1111/raq.12889","DOIUrl":null,"url":null,"abstract":"<p>Aquaculture is one of the fastest-growing food production sectors. As the global human population continues to increase and further pressure is added to the prospects of achieving global food security, aquaculture is expected to play an integral role in meeting future nutrition demands. With advances in genetic technologies over recent years, much progress has been made within the realm of selective breeding. Despite success, selective breeding programs have limitations to the rate of genetic gain they can achieve. The incorporation of targeted genetic technologies, such as gene editing, into research related to selective breeding programs will help identify specific genes related to commercially desirable traits, as well as expedite genetic improvement. This review summarises research encompassing the most commonly targeted traits using gene editing within aquaculture, namely reproduction and development, pigmentation, growth and disease resistance. In addition, this review illustrates how the incorporation of gene editing can expedite genetic improvement through the rapid fixation of desirable alleles, as well as suggests strategies to accelerate genetic improvement for aquaculture production.</p>","PeriodicalId":227,"journal":{"name":"Reviews in Aquaculture","volume":"16 3","pages":"1127-1159"},"PeriodicalIF":8.8000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/raq.12889","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Aquaculture","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/raq.12889","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Aquaculture is one of the fastest-growing food production sectors. As the global human population continues to increase and further pressure is added to the prospects of achieving global food security, aquaculture is expected to play an integral role in meeting future nutrition demands. With advances in genetic technologies over recent years, much progress has been made within the realm of selective breeding. Despite success, selective breeding programs have limitations to the rate of genetic gain they can achieve. The incorporation of targeted genetic technologies, such as gene editing, into research related to selective breeding programs will help identify specific genes related to commercially desirable traits, as well as expedite genetic improvement. This review summarises research encompassing the most commonly targeted traits using gene editing within aquaculture, namely reproduction and development, pigmentation, growth and disease resistance. In addition, this review illustrates how the incorporation of gene editing can expedite genetic improvement through the rapid fixation of desirable alleles, as well as suggests strategies to accelerate genetic improvement for aquaculture production.
期刊介绍:
Reviews in Aquaculture is a journal that aims to provide a platform for reviews on various aspects of aquaculture science, techniques, policies, and planning. The journal publishes fully peer-reviewed review articles on topics including global, regional, and national production and market trends in aquaculture, advancements in aquaculture practices and technology, interactions between aquaculture and the environment, indigenous and alien species in aquaculture, genetics and its relation to aquaculture, as well as aquaculture product quality and traceability. The journal is indexed and abstracted in several databases including AgBiotech News & Information (CABI), AgBiotechNet, Agricultural Engineering Abstracts, Environment Index (EBSCO Publishing), SCOPUS (Elsevier), and Web of Science (Clarivate Analytics) among others.