BETA-BINOMIAL MODEL IN SMALL AREA ESTIMATION USING HIERARCHICAL LIKELIHOOD APPROACH

E. Sunandi, K. Notodiputro, Indahwati Indahwati, A. Soleh
{"title":"BETA-BINOMIAL MODEL IN SMALL AREA ESTIMATION USING HIERARCHICAL LIKELIHOOD APPROACH","authors":"E. Sunandi, K. Notodiputro, Indahwati Indahwati, A. Soleh","doi":"10.14710/medstat.16.1.88-99","DOIUrl":null,"url":null,"abstract":"Small Area Estimation is a statistical method used to estimate parameters in sub-populations with small or even no sample sizes. This research aims to evaluate the Beta-Binomial model's performance for estimating small areas at the area level. The estimation method used is Hierarchical Likelihood (HL). The data used are simulation data and empirical data. Simulation studies were used to investigate the proposed model. The estimator's Mean Squared Error of Prediction (MSEP) and Absolute Bias (AB) estimator values determine the best estimation criteria. An empirical study using data on the illiteracy rate at the sub-district level in Bengkulu Province. The results of the simulation study show that, in general, the parameter estimators are nearly unbiased. Proportion prediction has the same tendency as parameters. Finally, the HL estimator has a small MSEP estimator. The results of an empirical study show that the average illiteracy rate in Bengkulu province is quite diverse. Kepahiang District has the highest average illiteracy rate in Bengkulu Province in 2021.","PeriodicalId":34146,"journal":{"name":"Media Statistika","volume":"213 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Media Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/medstat.16.1.88-99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Small Area Estimation is a statistical method used to estimate parameters in sub-populations with small or even no sample sizes. This research aims to evaluate the Beta-Binomial model's performance for estimating small areas at the area level. The estimation method used is Hierarchical Likelihood (HL). The data used are simulation data and empirical data. Simulation studies were used to investigate the proposed model. The estimator's Mean Squared Error of Prediction (MSEP) and Absolute Bias (AB) estimator values determine the best estimation criteria. An empirical study using data on the illiteracy rate at the sub-district level in Bengkulu Province. The results of the simulation study show that, in general, the parameter estimators are nearly unbiased. Proportion prediction has the same tendency as parameters. Finally, the HL estimator has a small MSEP estimator. The results of an empirical study show that the average illiteracy rate in Bengkulu province is quite diverse. Kepahiang District has the highest average illiteracy rate in Bengkulu Province in 2021.
使用分层似然法在小区域估算中使用 beta-二叉模型
小面积估算是一种统计方法,用于估算样本量较小甚至没有样本量的子人群的参数。本研究旨在评估 Beta-二叉模型在地区层面估算小地区的性能。使用的估算方法是层次似然法(HL)。使用的数据包括模拟数据和经验数据。模拟研究用于研究拟议模型。估算值的平均预测平方误差(MSEP)和绝对偏差(AB)估算值决定了最佳估算标准。使用明古鲁省县级文盲率数据进行实证研究。模拟研究结果表明,一般来说,参数估计值几乎无偏。比例预测与参数预测具有相同的趋势。最后,HL 估计器的 MSEP 估计器较小。实证研究结果表明,明古鲁省的平均文盲率差异很大。2021 年,Kepahiang 区是明古鲁省平均文盲率最高的地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信