{"title":"Review on Pest Detection and Classification in Agricultural Environments Using Image-Based Deep Learning Models and Its Challenges","authors":"P. Venkatasaichandrakanth, M. Iyapparaja","doi":"10.3103/S1060992X23040112","DOIUrl":null,"url":null,"abstract":"<p>Agronomic pests cause agriculture to incur financial losses because they diminish production, which lowers revenue. Pest control, essential to lowering these losses, involves identifying and eliminating this risk. Since it enables management to take place, identification is the fundamental component of control. Utilizing the pest’s traits, visual identification is done. These characteristics differ between animals and are intrinsic. Since identification is so difficult, specialists in the field handle most of the work, which concentrates the information. Researchers have developed various techniques for predicting crop diseases using images of infected leaves. While progress has been made in identifying plant diseases using different models and methods, new advancements and discussions still offer room for improvement. Technology can significantly improve global crop production, and large datasets can be used to train models and approaches that uncover new and improved methods for detecting plant diseases and addressing low-yield issues. The effectiveness of machine learning and deep learning for identifying and categorizing pests has been confirmed by prior research. This paper thoroughly examines and critically evaluates the many strategies and methodologies used to classify and detect pests or insects using deep learning. The paper examines the benefits and drawbacks of various methodologies and considers potential problems with insect detection via image processing. The paper concludes by providing an analysis and outlook on the future direction of pest detection and classification using deep learning on plants like peanuts.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 4","pages":"295 - 309"},"PeriodicalIF":1.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X23040112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Agronomic pests cause agriculture to incur financial losses because they diminish production, which lowers revenue. Pest control, essential to lowering these losses, involves identifying and eliminating this risk. Since it enables management to take place, identification is the fundamental component of control. Utilizing the pest’s traits, visual identification is done. These characteristics differ between animals and are intrinsic. Since identification is so difficult, specialists in the field handle most of the work, which concentrates the information. Researchers have developed various techniques for predicting crop diseases using images of infected leaves. While progress has been made in identifying plant diseases using different models and methods, new advancements and discussions still offer room for improvement. Technology can significantly improve global crop production, and large datasets can be used to train models and approaches that uncover new and improved methods for detecting plant diseases and addressing low-yield issues. The effectiveness of machine learning and deep learning for identifying and categorizing pests has been confirmed by prior research. This paper thoroughly examines and critically evaluates the many strategies and methodologies used to classify and detect pests or insects using deep learning. The paper examines the benefits and drawbacks of various methodologies and considers potential problems with insect detection via image processing. The paper concludes by providing an analysis and outlook on the future direction of pest detection and classification using deep learning on plants like peanuts.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.