Hongxing Peng, Hu Chen, Xin Zhang, Huanai Liu, Keyin Chen, Juntao Xiong
{"title":"Retinanet_G2S: a multi-scale feature fusion-based network for fruit detection of punna navel oranges in complex field environments","authors":"Hongxing Peng, Hu Chen, Xin Zhang, Huanai Liu, Keyin Chen, Juntao Xiong","doi":"10.1007/s11119-023-10098-6","DOIUrl":null,"url":null,"abstract":"<p>In the natural environment, the detection and recognition process of Punna navel orange fruit using machine vision systems is affected by many factors, such as complex background, uneven light illumination, occlusions of branches and leaves and large variations in fruit size. To solve these problems of low accuracy in fruit detection and poor robustness of the detection algorithm in the field conditions, a new object detection algorithm, named Retinanet_G2S, was proposed in this paper based on the modified Retinanet network. The images of Punna navel orange were collected with Microsoft Kinect V2 in the uncontrolled environment. Firstly, a new Res2Net-GF network was designed to replace the section of feature extraction in the original Retinanet, which can potentially improve the learning ability of target features of the trunk network. Secondly, a multi-scale cross-regional feature fusion grids network was designed to replace the feature pyramid network module in the original Retinanet, which could enhance the ability of feature information fusion among different scales of the feature pyramid. Finally, the original border regression localization method in Retinanet network was optimized based on the accurate boundary box regression algorithm. The study results showed that, compared with the original Retinanet network, Retinanet_G2S improved mAP, mAP50, mAP75, mAP<sub>S</sub>, mAP<sub>M</sub> and mAP<sub>L</sub> by 3.8%, 1.7%, 5.8%, 2.4%, 2.1% and 5.5%, respectively. Moreover, compared with 7 types of classic object detection models, including SSD, YOLOv3, CenterNet, CornerNet, FCOS, Faster-RCNN and Retinanet, the average increase in mAP of Retinanet_G2S was 9.11%. Overall, Retinanet_G2S showed a promising optimization effect, particularly for the detection of small targets and overlapping fruits.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"19 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-023-10098-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the natural environment, the detection and recognition process of Punna navel orange fruit using machine vision systems is affected by many factors, such as complex background, uneven light illumination, occlusions of branches and leaves and large variations in fruit size. To solve these problems of low accuracy in fruit detection and poor robustness of the detection algorithm in the field conditions, a new object detection algorithm, named Retinanet_G2S, was proposed in this paper based on the modified Retinanet network. The images of Punna navel orange were collected with Microsoft Kinect V2 in the uncontrolled environment. Firstly, a new Res2Net-GF network was designed to replace the section of feature extraction in the original Retinanet, which can potentially improve the learning ability of target features of the trunk network. Secondly, a multi-scale cross-regional feature fusion grids network was designed to replace the feature pyramid network module in the original Retinanet, which could enhance the ability of feature information fusion among different scales of the feature pyramid. Finally, the original border regression localization method in Retinanet network was optimized based on the accurate boundary box regression algorithm. The study results showed that, compared with the original Retinanet network, Retinanet_G2S improved mAP, mAP50, mAP75, mAPS, mAPM and mAPL by 3.8%, 1.7%, 5.8%, 2.4%, 2.1% and 5.5%, respectively. Moreover, compared with 7 types of classic object detection models, including SSD, YOLOv3, CenterNet, CornerNet, FCOS, Faster-RCNN and Retinanet, the average increase in mAP of Retinanet_G2S was 9.11%. Overall, Retinanet_G2S showed a promising optimization effect, particularly for the detection of small targets and overlapping fruits.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.