Bialgebras, the Yang–Baxter equation and Manin triples for mock-Lie algebras

IF 0.3 Q4 MATHEMATICS
Taoufik Chtioui, Karima Benali, A. Hajjaji, S. Mabrouk
{"title":"Bialgebras, the Yang–Baxter equation and Manin triples for mock-Lie algebras","authors":"Taoufik Chtioui, Karima Benali, A. Hajjaji, S. Mabrouk","doi":"10.12697/acutm.2023.27.16","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to introduce the notion of a mock-Lie bialgebra which is equivalent to a Manin triple of mock-Lie algebras. The study of a special case called coboundary mock-Lie bialgebra leads to introducing the mock-Lie Yang–Baxter equation on a mock-Lie algebra which is an analogue of the classical Yang–Baxter equation on a Lie algebra. Note that a skew-symmetric solution of mock-Lie Yang–Baxter equation gives a mock-Lie bialgebra. Finally, O-operators are studied to construct a skew-symmetric solution of a mock-Lie Yang–Baxter equation.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":" 9","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2023.27.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to introduce the notion of a mock-Lie bialgebra which is equivalent to a Manin triple of mock-Lie algebras. The study of a special case called coboundary mock-Lie bialgebra leads to introducing the mock-Lie Yang–Baxter equation on a mock-Lie algebra which is an analogue of the classical Yang–Baxter equation on a Lie algebra. Note that a skew-symmetric solution of mock-Lie Yang–Baxter equation gives a mock-Lie bialgebra. Finally, O-operators are studied to construct a skew-symmetric solution of a mock-Lie Yang–Baxter equation.
模拟李代数的比亚尔布拉、杨-巴克斯特方程和马宁三元组
本文的目的是引入拟李双代数的概念,它等价于拟李代数的Manin三重。通过对共边界模拟李双代数的研究,在模拟李代数上引入了模拟李杨-巴克斯特方程,它是李代数上经典杨-巴克斯特方程的类比。注意,mock-Lie Yang-Baxter方程的一个偏对称解给出了一个mock-Lie双代数。最后,研究了o算子构造模拟lie Yang-Baxter方程的偏对称解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信