Extracting illuminated vegetation, shadowed vegetation and background for finer fractional vegetation cover with polarization information and a convolutional network

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Hongru Bi, Wei Chen, Yi Yang
{"title":"Extracting illuminated vegetation, shadowed vegetation and background for finer fractional vegetation cover with polarization information and a convolutional network","authors":"Hongru Bi, Wei Chen, Yi Yang","doi":"10.1007/s11119-023-10094-w","DOIUrl":null,"url":null,"abstract":"<p>Shadows are inevitable in vegetated remote sensing scenes due to variations in viewing and solar geometries, resulting in illuminated vegetation, shadowed vegetation, illuminated background and shadowed background. In RGB images, shadowed vegetation is difficult to separate from the shadowed background because their spectra are very similar in the visible light range. Furthermore, shadowed vegetation may provide different ecological functions than illuminated vegetation. Therefore, it is important to extract both illuminated and shadowed vegetation instead of combining them into one vegetation class. However, most previous studies focused on extracting total vegetation cover and neglected separating illuminated and shadowed vegetation, partly due to a lack of sufficient information. In this study, polarization information is introduced to extract illuminated vegetation, shadowed vegetation and background simultaneously with different deep learning algorithms. The experimental results show that the addition of polarization information can effectively improve the extraction accuracy of illuminated vegetation, shadowed vegetation and background, with a maximum accuracy improvement of 12.2%. The accuracy of shadow vegetation improved the most, with a rate of 21.8%. The results of this study suggest that by adding polarization information, illuminated and shadowed vegetation can be accurately extracted to provide a reliable vegetation cover product for remote sensing.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"55 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-023-10094-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Shadows are inevitable in vegetated remote sensing scenes due to variations in viewing and solar geometries, resulting in illuminated vegetation, shadowed vegetation, illuminated background and shadowed background. In RGB images, shadowed vegetation is difficult to separate from the shadowed background because their spectra are very similar in the visible light range. Furthermore, shadowed vegetation may provide different ecological functions than illuminated vegetation. Therefore, it is important to extract both illuminated and shadowed vegetation instead of combining them into one vegetation class. However, most previous studies focused on extracting total vegetation cover and neglected separating illuminated and shadowed vegetation, partly due to a lack of sufficient information. In this study, polarization information is introduced to extract illuminated vegetation, shadowed vegetation and background simultaneously with different deep learning algorithms. The experimental results show that the addition of polarization information can effectively improve the extraction accuracy of illuminated vegetation, shadowed vegetation and background, with a maximum accuracy improvement of 12.2%. The accuracy of shadow vegetation improved the most, with a rate of 21.8%. The results of this study suggest that by adding polarization information, illuminated and shadowed vegetation can be accurately extracted to provide a reliable vegetation cover product for remote sensing.

Abstract Image

利用偏振信息和卷积网络提取照明植被、阴影植被和背景,以获得更精细的植被覆盖分数
在植被遥感场景中,由于视角和太阳几何形状的变化,不可避免地会出现阴影,从而产生受光植被、阴影植被、受光背景和阴影背景。在 RGB 图像中,阴影植被很难从阴影背景中分离出来,因为它们在可见光范围内的光谱非常相似。此外,阴影植被与光照植被可能具有不同的生态功能。因此,必须同时提取照明植被和阴影植被,而不是将它们合并为一类植被。然而,以往的研究大多侧重于提取植被总覆盖率,而忽略了分离受光照植被和阴影植被,部分原因是缺乏足够的信息。本研究引入了偏振信息,利用不同的深度学习算法同时提取照明植被、阴影植被和背景。实验结果表明,偏振信息的加入能有效提高光照植被、阴影植被和背景的提取精度,最高精度提高了 12.2%。其中,阴影植被的精度提高幅度最大,达到 21.8%。该研究结果表明,通过添加偏振信息,可以准确提取照明植被和阴影植被,为遥感提供可靠的植被覆盖产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信