{"title":"Quantitative analysis of facial soft tissue using weighted cascade regression model applicable for facial plastic surgery","authors":"Ali Fahmi Jafargholkhanloo, Mousa Shamsi","doi":"10.1016/j.image.2023.117086","DOIUrl":null,"url":null,"abstract":"<div><p>Localization of facial landmarks plays an important role in the measurement of facial metrics applicable for beauty analysis and facial plastic surgery. The first step in detecting facial landmarks is to estimate the face bounding box. Clinical images of patients' faces usually show intensity non-uniformity. These conditions cause common face detection algorithms do not perform well in face detection under varying illumination. To solve this problem, a modified fuzzy c-means (MFCM) algorithm is used under varying illumination modeling. The cascade regression method (CRM) has an appropriate performance in face alignment. This algorithm has two main drawbacks. (1) In the training phase, increasing the real data without considering normal data can lead to over-fitting. To solve this problem, a weighted CRM (WCRM) is presented. (2) In the test phase, using a mean shape causes the initial shape to be either near to or far from the face shape. To overcome this problem, a Procrustes-based analysis is presented. One of the most important steps in facial landmark localization is feature extraction. In this study, to increase detection accuracy of the cephalometric landmarks, local phase quantization (LPQ) is used for feature extraction in all three channels of RGB color space. Finally, the proposed algorithm is used to measure facial anthropometric metrics. Experimental results show that the proposed algorithm has a better performance in facial landmark localization than other compared algorithms.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"121 ","pages":"Article 117086"},"PeriodicalIF":3.4000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596523001686","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Localization of facial landmarks plays an important role in the measurement of facial metrics applicable for beauty analysis and facial plastic surgery. The first step in detecting facial landmarks is to estimate the face bounding box. Clinical images of patients' faces usually show intensity non-uniformity. These conditions cause common face detection algorithms do not perform well in face detection under varying illumination. To solve this problem, a modified fuzzy c-means (MFCM) algorithm is used under varying illumination modeling. The cascade regression method (CRM) has an appropriate performance in face alignment. This algorithm has two main drawbacks. (1) In the training phase, increasing the real data without considering normal data can lead to over-fitting. To solve this problem, a weighted CRM (WCRM) is presented. (2) In the test phase, using a mean shape causes the initial shape to be either near to or far from the face shape. To overcome this problem, a Procrustes-based analysis is presented. One of the most important steps in facial landmark localization is feature extraction. In this study, to increase detection accuracy of the cephalometric landmarks, local phase quantization (LPQ) is used for feature extraction in all three channels of RGB color space. Finally, the proposed algorithm is used to measure facial anthropometric metrics. Experimental results show that the proposed algorithm has a better performance in facial landmark localization than other compared algorithms.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.