Baxter operators in Ruijsenaars hyperbolic system II: bispectral wave functions

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
N. Belousov, S. Derkachov, S. Kharchev, S. Khoroshkin
{"title":"Baxter operators in Ruijsenaars hyperbolic system II: bispectral wave functions","authors":"N. Belousov, S. Derkachov, S. Kharchev, S. Khoroshkin","doi":"10.1007/s00023-023-01385-z","DOIUrl":null,"url":null,"abstract":"<p>In the previous paper, we introduced a commuting family of Baxter <i>Q</i>-operators for the quantum Ruijsenaars hyperbolic system. In the present work, we show that the wave functions of the quantum system found by M. Hallnäs and S. Ruijsenaars also diagonalize Baxter operators. Using this property, we prove the conjectured duality relation for the wave function. As a corollary, we show that the wave function solves bispectral problems for pairs of dual Macdonald and Baxter operators. Besides, we prove the conjectured symmetry of the wave function with respect to spectral variables and obtain new integral representation for it.</p>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"7 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1007/s00023-023-01385-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the previous paper, we introduced a commuting family of Baxter Q-operators for the quantum Ruijsenaars hyperbolic system. In the present work, we show that the wave functions of the quantum system found by M. Hallnäs and S. Ruijsenaars also diagonalize Baxter operators. Using this property, we prove the conjectured duality relation for the wave function. As a corollary, we show that the wave function solves bispectral problems for pairs of dual Macdonald and Baxter operators. Besides, we prove the conjectured symmetry of the wave function with respect to spectral variables and obtain new integral representation for it.

rujsenaars双曲系统中的Baxter算子II:双谱波函数
在上一篇论文中,我们引入了量子rujsenaars双曲系统的交换Baxter q算子族。在目前的工作中,我们证明了M. Hallnäs和S. rujsenaars发现的量子系统的波函数也对角化Baxter算子。利用这一性质,证明了波函数的猜想对偶关系。作为推论,我们证明了波函数解决了对偶Macdonald和Baxter算子对的双谱问题。此外,我们证明了波函数关于谱变量的猜想对称性,并得到了波函数关于谱变量的新的积分表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信