Non-trivial Bundles and Algebraic Classical Field Theory

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Romeo Brunetti, Andrea Moro
{"title":"Non-trivial Bundles and Algebraic Classical Field Theory","authors":"Romeo Brunetti,&nbsp;Andrea Moro","doi":"10.1007/s00023-023-01386-y","DOIUrl":null,"url":null,"abstract":"<div><p>Inspired by the recent algebraic approach to classical field theory, we propose a more general setting based on the manifold of smooth sections of a non-trivial fiber bundle. Central is the notion of observables over such sections, i.e., appropriate smooth functions on them. The kinematics will be further specified by means of the Peierls brackets, which in turn are defined via the causal propagators of linearized field equations. We shall compare the formalism we use with the more traditional ones.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 9","pages":"4195 - 4262"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-023-01386-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01386-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the recent algebraic approach to classical field theory, we propose a more general setting based on the manifold of smooth sections of a non-trivial fiber bundle. Central is the notion of observables over such sections, i.e., appropriate smooth functions on them. The kinematics will be further specified by means of the Peierls brackets, which in turn are defined via the causal propagators of linearized field equations. We shall compare the formalism we use with the more traditional ones.

Abstract Image

非平凡束与代数经典场论
受经典场论最近的代数方法的启发,我们提出了一个基于非平凡纤维束光滑截面流形的更一般的设置。核心是这些部分上的可观察对象的概念,即在它们上适当的平滑函数。运动学将通过佩尔斯括号进一步说明,而佩尔斯括号又通过线性化场方程的因果传播量来定义。我们将把我们使用的形式主义与比较传统的形式主义进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信