{"title":"Formulation and Characterization of Natural Surfactant-Stabilized Zein Nanoparticles for Encapsulation of Ergocalciferol","authors":"Zhang Chen, Zhaoxiang Ma, Jun He, Jinyi Song, Jinyue Zhao, Yiguo Zhao","doi":"10.1007/s11483-023-09816-4","DOIUrl":null,"url":null,"abstract":"<div><p>Ergocalciferol, despite its high beneficial potential in foods and pharmaceuticals, faces challenges in utilization due to its hydrophobic and sensitive properties. In this study, we developed ergocalciferol-loaded zein nanoparticles coated with modified lecithin (ML) or rhamnolipids (RL) using the anti-solvent precipitation method. Both ML- and RL-stabilized zein nanoparticles exhibited narrow particle size distribution and high encapsulation efficiency of ergocalciferol, achieving 94.54 ± 2.28% and 94.24 ± 2.35%, respectively. The ML-stabilized nanoparticles demonstrated good stability under thermal treatments (30–90 °C) and pH variations (pH 3–8). In comparison, the nanoparticles stabilized by rhamnolipid (RL) remained stable under thermal conditions but became unstable when the pH dropped below 6. Additionally, both ML- and RL-stabilized nanoparticles demonstrated an increase in particle size after the addition of salt. Furthermore, all samples displayed high bioaccessibility of ergocalciferol after in vitro digestion and excellent physicochemical stability during 30 days of storage. Therefore, the ML- and RL-stabilized zein nanoparticles present promising prospects for effectively transporting functional ingredients such as ergocalciferol.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 1","pages":"182 - 190"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-023-09816-4","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ergocalciferol, despite its high beneficial potential in foods and pharmaceuticals, faces challenges in utilization due to its hydrophobic and sensitive properties. In this study, we developed ergocalciferol-loaded zein nanoparticles coated with modified lecithin (ML) or rhamnolipids (RL) using the anti-solvent precipitation method. Both ML- and RL-stabilized zein nanoparticles exhibited narrow particle size distribution and high encapsulation efficiency of ergocalciferol, achieving 94.54 ± 2.28% and 94.24 ± 2.35%, respectively. The ML-stabilized nanoparticles demonstrated good stability under thermal treatments (30–90 °C) and pH variations (pH 3–8). In comparison, the nanoparticles stabilized by rhamnolipid (RL) remained stable under thermal conditions but became unstable when the pH dropped below 6. Additionally, both ML- and RL-stabilized nanoparticles demonstrated an increase in particle size after the addition of salt. Furthermore, all samples displayed high bioaccessibility of ergocalciferol after in vitro digestion and excellent physicochemical stability during 30 days of storage. Therefore, the ML- and RL-stabilized zein nanoparticles present promising prospects for effectively transporting functional ingredients such as ergocalciferol.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.