Chemical enrichment of conjugated linoleic acid in cottonseed oil using ruthenium nanoparticle immobilized on chemically modified multiwalled carbon nanotube as heterogeneous nanocatalyst

IF 1.9 4区 农林科学 Q3 CHEMISTRY, APPLIED
Weiwei Cheng, Bokai Yu, Yadan Zheng, Peng Yang, Zhigang Ke, Xuxia Zhou, Zheng Guo, Xuebing Xu, Yuting Ding, Shulai Liu
{"title":"Chemical enrichment of conjugated linoleic acid in cottonseed oil using ruthenium nanoparticle immobilized on chemically modified multiwalled carbon nanotube as heterogeneous nanocatalyst","authors":"Weiwei Cheng,&nbsp;Bokai Yu,&nbsp;Yadan Zheng,&nbsp;Peng Yang,&nbsp;Zhigang Ke,&nbsp;Xuxia Zhou,&nbsp;Zheng Guo,&nbsp;Xuebing Xu,&nbsp;Yuting Ding,&nbsp;Shulai Liu","doi":"10.1002/aocs.12785","DOIUrl":null,"url":null,"abstract":"<p>Conjugated linoleic acid (CLA) has a variety of health-promoting biological activities, and thus has a great potential as dietary supplement in functional foods. In our work, the effects of surface modifications of multiwalled carbon nanotubes (MWCNTs) support on the catalytic efficiency and selectivity of supported Ru catalysts for linoleic acid (LA) to CLA, as well as their influence mechanisms were well investigated. The results showed that the CLA yields for Ru/MWCNTs-OH (36.45%) and Ru/MWCNTs-COOH (31.06%) were significantly higher than that for Ru/MWCNTs (23.94%). This indicated that hydroxylated and carboxylated surface modification of MWCNTs could improve the catalytic activity of Ru. The CLA selectivity of Ru/MWCNTs-N-Doped and Ru/MWCNTs-NH<sub>2</sub> were up to 96.06% and 88.26%, respectively, and was also proved to be temperature and time dependent. TEM analysis indicated Ru nanoparticles were evenly attached on the surface of mMWCNTs but have little agglomeration on MWCNTs, and their particle sizes are negatively related to the catalytic efficiency. Further catalyst characterization by XPS demonstrated that high CLA selectivity of Ru/MWCNTs-N-Doped and Ru/MWCNTs-NH<sub>2</sub> were attributed to the high Ru (IV) content on the surface of supports. Thus, the mMWCNTs were proved to be the excellent support of Ru catalyst for high isomerization selectivity towards CLA formation.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 11","pages":"1133-1143"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12785","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Conjugated linoleic acid (CLA) has a variety of health-promoting biological activities, and thus has a great potential as dietary supplement in functional foods. In our work, the effects of surface modifications of multiwalled carbon nanotubes (MWCNTs) support on the catalytic efficiency and selectivity of supported Ru catalysts for linoleic acid (LA) to CLA, as well as their influence mechanisms were well investigated. The results showed that the CLA yields for Ru/MWCNTs-OH (36.45%) and Ru/MWCNTs-COOH (31.06%) were significantly higher than that for Ru/MWCNTs (23.94%). This indicated that hydroxylated and carboxylated surface modification of MWCNTs could improve the catalytic activity of Ru. The CLA selectivity of Ru/MWCNTs-N-Doped and Ru/MWCNTs-NH2 were up to 96.06% and 88.26%, respectively, and was also proved to be temperature and time dependent. TEM analysis indicated Ru nanoparticles were evenly attached on the surface of mMWCNTs but have little agglomeration on MWCNTs, and their particle sizes are negatively related to the catalytic efficiency. Further catalyst characterization by XPS demonstrated that high CLA selectivity of Ru/MWCNTs-N-Doped and Ru/MWCNTs-NH2 were attributed to the high Ru (IV) content on the surface of supports. Thus, the mMWCNTs were proved to be the excellent support of Ru catalyst for high isomerization selectivity towards CLA formation.

化学修饰多壁碳纳米管固定纳米钌作为非均相纳米催化剂在棉籽油中富集共轭亚油酸
共轭亚油酸(CLA)具有多种促进健康的生物活性,因此在功能性食品中作为膳食补充剂具有很大的潜力。本文研究了多壁碳纳米管(MWCNTs)载体的表面修饰对负载型Ru催化剂催化亚油酸(LA)转化为CLA的效率和选择性的影响及其影响机制。结果表明,Ru/MWCNTs- oh(36.45%)和Ru/MWCNTs- cooh(31.06%)的CLA产率显著高于Ru/MWCNTs(23.94%)。这表明羟基化和羧化改性的MWCNTs可以提高Ru的催化活性。Ru/ mwcnts - n掺杂和Ru/MWCNTs-NH2的CLA选择性分别高达96.06%和88.26%,并且与温度和时间有关。TEM分析表明,Ru纳米颗粒均匀附着在mMWCNTs表面,但在MWCNTs表面几乎没有团聚现象,粒径大小与催化效率呈负相关。进一步的XPS表征表明,Ru/ mwcnts - n掺杂和Ru/MWCNTs-NH2的高CLA选择性归因于载体表面的高Ru (IV)含量。因此,mMWCNTs被证明是Ru催化剂对CLA形成的高异构化选择性的优良载体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
95
审稿时长
2.4 months
期刊介绍: The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate. JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of year­to­year, environmental, and/ or cultivar variations through use of appropriate statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信