Practical Applications of Alternative Data in Investment Management: Usage, Challenges, and Valuation

Gene Ekster, Petter Kolm
{"title":"Practical Applications of Alternative Data in Investment Management: Usage, Challenges, and Valuation","authors":"Gene Ekster, Petter Kolm","doi":"10.3905/pa.2023.pa547","DOIUrl":null,"url":null,"abstract":"In <ext-link><bold><italic>Alternative Data in Investment Management: Usage, Challenges, and Valuation</italic></bold></ext-link>, from the Fall 2021 issue of <bold><italic>The Journal of Financial Data Science</italic></bold>, <bold>Gene Ekster</bold> and <bold>Petter Kolm</bold>, both at <bold>New York University’s Courant Institute of Mathematical Sciences</bold>, provide insight into how to get the most out of this relatively new resource. Unlike traditional financial data used to analyze and manage investments, alternative data has unique technical challenges, an evolving industry of providers, and valuation challenges. Ekster and Kolm offer methods of dealing with these matters. They point out that it is crucial to understand the structure of the industry, particularly the difference between data originators and intermediaries. The authors also discuss entity mapping, tagging, and other ways of addressing technical issues with alternative data. Importantly, they provide investment professionals with methods of determining the likely value of an alternative dataset with a short history. They include a case study on predicting revenues of publicly traded companies, thus illustrating the design considerations for data processing pipelines and downstream analytics.","PeriodicalId":500434,"journal":{"name":"Practical applications of institutional investor journals","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical applications of institutional investor journals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/pa.2023.pa547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Alternative Data in Investment Management: Usage, Challenges, and Valuation, from the Fall 2021 issue of The Journal of Financial Data Science, Gene Ekster and Petter Kolm, both at New York University’s Courant Institute of Mathematical Sciences, provide insight into how to get the most out of this relatively new resource. Unlike traditional financial data used to analyze and manage investments, alternative data has unique technical challenges, an evolving industry of providers, and valuation challenges. Ekster and Kolm offer methods of dealing with these matters. They point out that it is crucial to understand the structure of the industry, particularly the difference between data originators and intermediaries. The authors also discuss entity mapping, tagging, and other ways of addressing technical issues with alternative data. Importantly, they provide investment professionals with methods of determining the likely value of an alternative dataset with a short history. They include a case study on predicting revenues of publicly traded companies, thus illustrating the design considerations for data processing pipelines and downstream analytics.
另类数据在投资管理中的实际应用:使用、挑战和估值
在《金融数据科学杂志》2021年秋季刊的《投资管理中的另类数据:使用、挑战和估值》一文中,纽约大学Courant数学科学研究所的Gene Ekster和Petter Kolm就如何充分利用这种相对较新的资源提供了见解。与用于分析和管理投资的传统财务数据不同,替代数据具有独特的技术挑战、不断发展的提供商行业和估值挑战。埃克斯特和科尔姆提供了处理这些问题的方法。他们指出,了解行业结构至关重要,尤其是数据发起者和中介机构之间的区别。作者还讨论了实体映射、标记和其他使用可选数据解决技术问题的方法。重要的是,它们为投资专业人士提供了确定具有短历史的替代数据集的可能价值的方法。其中包括一个预测上市公司收入的案例研究,从而说明了数据处理管道和下游分析的设计考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信