Higher Mertens constants for almost primes II

Bayless, Jonathan, Kinlaw, Paul, Lichtman, Jared Duker
{"title":"Higher Mertens constants for almost primes II","authors":"Bayless, Jonathan, Kinlaw, Paul, Lichtman, Jared Duker","doi":"10.48550/arxiv.2303.06481","DOIUrl":null,"url":null,"abstract":"For $k\\ge1$, let $R_k(x)$ denote the reciprocal sum up to $x$ of numbers with $k$ prime factors, counted with multiplicity. In prior work, the authors obtained estimates for $R_k(x)$, extending Mertens' second theorem, as well as a finer-scale estimate for $R_2(x)$ up to $(\\log x)^{-N}$ error for any $N > 0$. In this article, we establish the limiting behavior of the higher Mertens constants from the $R_2(x)$ estimate. We also extend these results to $R_3(x)$, and we remark on the general case $k\\ge4$.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2303.06481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For $k\ge1$, let $R_k(x)$ denote the reciprocal sum up to $x$ of numbers with $k$ prime factors, counted with multiplicity. In prior work, the authors obtained estimates for $R_k(x)$, extending Mertens' second theorem, as well as a finer-scale estimate for $R_2(x)$ up to $(\log x)^{-N}$ error for any $N > 0$. In this article, we establish the limiting behavior of the higher Mertens constants from the $R_2(x)$ estimate. We also extend these results to $R_3(x)$, and we remark on the general case $k\ge4$.
几乎素数的高Mertens常数II
对于$k\ge1$,设$R_k(x)$表示具有$k$质因数的数的倒数和,直至$x$,并进行多重计数。在之前的工作中,作者获得了$R_k(x)$的估计,扩展了Mertens的第二定理,以及对$R_2(x)$的更精细的估计,直到$(\log x)^{-N}$误差对任何$N > 0$。在本文中,我们从$R_2(x)$估计中建立了高Mertens常数的极限行为。我们还将这些结果扩展到$R_3(x)$,并对一般情况$k\ge4$进行评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信