Prachi Goyal, P.K Singhal, Pooja Sahoo, Deep K. Parsediya
{"title":"Modified E-Shape Rectangular Microstrip Patch Antenna with DGS for Wireless Communication","authors":"Prachi Goyal, P.K Singhal, Pooja Sahoo, Deep K. Parsediya","doi":"10.37391/ijeer.110327","DOIUrl":null,"url":null,"abstract":"A modified E-shape dual bands rectangular microstrip patch antenna for wireless applications is presented in this paper. An E-slot Microstrip patch antenna with a defective ground structure method has been proposed and getting two bands at 1.9 GHz and 2.89 GHz with S11 -10dB. Defective ground structures provide a maximum gain and low insertion loss i.e., a gain of 3.16 dB, voltage standing wave ratio less than 2, and insertion loss less than -10 dB for both bands. The size of the antenna is 46.83mm x 38.41mm x 1.676mm, which is compact in term of size. The dual band microstrip patch antenna exhibits low cost. The simulation's outcome closely resembles the actual printed antenna and applicable for WiMAX application. The antenna was designed using the Computer Simulation Technology (CST) software and printed on FR-4 substrate.","PeriodicalId":491088,"journal":{"name":"International journal of electrical & electronics research","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrical & electronics research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37391/ijeer.110327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A modified E-shape dual bands rectangular microstrip patch antenna for wireless applications is presented in this paper. An E-slot Microstrip patch antenna with a defective ground structure method has been proposed and getting two bands at 1.9 GHz and 2.89 GHz with S11 -10dB. Defective ground structures provide a maximum gain and low insertion loss i.e., a gain of 3.16 dB, voltage standing wave ratio less than 2, and insertion loss less than -10 dB for both bands. The size of the antenna is 46.83mm x 38.41mm x 1.676mm, which is compact in term of size. The dual band microstrip patch antenna exhibits low cost. The simulation's outcome closely resembles the actual printed antenna and applicable for WiMAX application. The antenna was designed using the Computer Simulation Technology (CST) software and printed on FR-4 substrate.