FINDING INFORMATION SETS WHEN CORRECTING ERROR BURSTS WITH QUASI-CYCLIC CODES

M.N. ISAEVA
{"title":"FINDING INFORMATION SETS WHEN CORRECTING ERROR BURSTS WITH QUASI-CYCLIC CODES","authors":"M.N. ISAEVA","doi":"10.36724/2072-8735-2023-17-7-4-12","DOIUrl":null,"url":null,"abstract":"This article discusses the question of assessing the probability of finding information sets in block-permutation and block-circulant matrices. Traditionally, interference-resistant coding is considered independent errors, however, in real systems they can be grouped and generate a so-called error burst. Known estimates of the probability of finding information sets are conducted for random matrices, and for correcting error bursts widespread block-permutation low density parity check codes (LDPC-codes) or block-circulant quasi cyclic codes (QC-codes) can be used. To estimate the probability of finding information sets mathematical modeling was used. Experiments have been carried out to identify parameters for specific structures that give the greatest probability of finding information sets. The article presents the results reflecting certain features in the values of the probability of finding information sets for matrices of different types, given assumptions and hypotheses about the features. Dependence of the presence of an information set from the size and location of its search interval inside the block permutation matrix was identified. The results of this research may be used to reduce the complexity of decoding by information sets, which, when considering random matrices, is exponential.","PeriodicalId":263691,"journal":{"name":"T-Comm","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"T-Comm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36724/2072-8735-2023-17-7-4-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article discusses the question of assessing the probability of finding information sets in block-permutation and block-circulant matrices. Traditionally, interference-resistant coding is considered independent errors, however, in real systems they can be grouped and generate a so-called error burst. Known estimates of the probability of finding information sets are conducted for random matrices, and for correcting error bursts widespread block-permutation low density parity check codes (LDPC-codes) or block-circulant quasi cyclic codes (QC-codes) can be used. To estimate the probability of finding information sets mathematical modeling was used. Experiments have been carried out to identify parameters for specific structures that give the greatest probability of finding information sets. The article presents the results reflecting certain features in the values of the probability of finding information sets for matrices of different types, given assumptions and hypotheses about the features. Dependence of the presence of an information set from the size and location of its search interval inside the block permutation matrix was identified. The results of this research may be used to reduce the complexity of decoding by information sets, which, when considering random matrices, is exponential.
在用准循环码纠正错误突发时查找信息集
本文讨论了在块置换矩阵和块循环矩阵中寻找信息集的概率评估问题。传统上,抗干扰编码被认为是独立的错误,然而,在实际系统中,它们可以被分组并产生所谓的错误突发。已知的发现信息集的概率估计是对随机矩阵进行的,为了纠正错误突发,可以使用广泛的块置换低密度奇偶校验码(ldpc -码)或块循环准循环码(qc -码)。为了估计找到信息集的概率,使用了数学建模。已经进行了实验,以确定特定结构的参数,使找到信息集的概率最大。本文给出了不同类型矩阵的信息集查找概率值中反映某些特征的结果,并给出了关于这些特征的假设和假设。识别了信息集存在与否与信息集在块排列矩阵内搜索区间的大小和位置的依赖关系。本研究结果可用于降低信息集解码的复杂性,当考虑随机矩阵时,信息集解码是指数的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信