Studies on Association Rule-based Table Data Analysis and its Applications - New Mathematics for Data Sciences - (An Invited Tutorial Paper)

Hiroshi Sakai
{"title":"Studies on Association Rule-based Table Data Analysis and its Applications - New Mathematics for Data Sciences - (An Invited Tutorial Paper)","authors":"Hiroshi Sakai","doi":"10.32381/jciss.2021.46.1-4.3","DOIUrl":null,"url":null,"abstract":"This tutorial paper will survey the research on association rule-based table data analysis and its application. The proposed methods obtain helpful information from discrete table data through rules, which differs from statistical table data analysis by mean or variance. Regression expressions in continuous value table data can characterize past data and predict future data values. The same will hold for rules in discrete value table data. This tutorial paper consists of the following three parts. Part I: Background and Examples of Rule Generation from Tables Part II: Mathematical Research of Rule Generation from Tables Part III: Realization of Software Tools and Applications. We introduce the research trends in this field widely through three parts.","PeriodicalId":319777,"journal":{"name":"Journal of Combinatorics, Information & System Sciences","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics, Information & System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32381/jciss.2021.46.1-4.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This tutorial paper will survey the research on association rule-based table data analysis and its application. The proposed methods obtain helpful information from discrete table data through rules, which differs from statistical table data analysis by mean or variance. Regression expressions in continuous value table data can characterize past data and predict future data values. The same will hold for rules in discrete value table data. This tutorial paper consists of the following three parts. Part I: Background and Examples of Rule Generation from Tables Part II: Mathematical Research of Rule Generation from Tables Part III: Realization of Software Tools and Applications. We introduce the research trends in this field widely through three parts.
基于关联规则的表数据分析及其应用研究-数据科学的新数学-(特邀指导论文)
本文将对基于关联规则的表数据分析及其应用的研究进行综述。本文提出的方法不同于用均值或方差分析统计表数据的方法,通过规则从离散表数据中获取有用信息。连续值表数据中的回归表达式可以表征过去的数据并预测未来的数据值。这同样适用于离散值表数据中的规则。本文由以下三个部分组成。第一部分:从表生成规则的背景和例子;第二部分:从表生成规则的数学研究;第三部分:软件工具和应用的实现。本文通过三个部分对该领域的研究动态进行了介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信