Entanglement Entropy of Ground States of the Three-Dimensional Ideal Fermi Gas in a Magnetic Field

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Paul Pfeiffer, Wolfgang Spitzer
{"title":"Entanglement Entropy of Ground States of the Three-Dimensional Ideal Fermi Gas in a Magnetic Field","authors":"Paul Pfeiffer,&nbsp;Wolfgang Spitzer","doi":"10.1007/s00023-023-01381-3","DOIUrl":null,"url":null,"abstract":"<div><p>We study the asymptotic growth of the entanglement entropy of ground states of non-interacting (spinless) fermions in <span>\\({{\\mathbb {R}}}^3\\)</span> subject to a constant magnetic field perpendicular to a plane. As for the case with no magnetic field we find, to leading order <span>\\(L^2\\ln (L)\\)</span>, a logarithmically enhanced area law of this entropy for a bounded, piecewise Lipschitz region <span>\\(L\\Lambda \\subset {{\\mathbb {R}}}^3\\)</span> as the scaling parameter <i>L</i> tends to infinity. This is in contrast to the two-dimensional case since particles can now move freely in the direction of the magnetic field, which causes the extra <span>\\(\\ln (L)\\)</span> factor. The explicit expression for the coefficient of the leading order contains a surface integral similar to the Widom–Sobolev formula in the non-magnetic case. It differs, however, in the sense that the dependence on the boundary, <span>\\(\\partial \\Lambda \\)</span>, is not solely on its area but on the “surface perpendicular to the direction of the magnetic field”. We utilize a two-term asymptotic expansion by Widom (up to an error term of order one) of certain traces of one-dimensional Wiener–Hopf operators with a discontinuous symbol. This leads to an improved error term of the order <span>\\(L^2\\)</span> of the relevant trace for piecewise <span>\\(\\textsf{C}^{1,\\alpha }\\)</span> smooth surfaces <span>\\(\\partial \\Lambda \\)</span>.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 8","pages":"3649 - 3698"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-023-01381-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01381-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the asymptotic growth of the entanglement entropy of ground states of non-interacting (spinless) fermions in \({{\mathbb {R}}}^3\) subject to a constant magnetic field perpendicular to a plane. As for the case with no magnetic field we find, to leading order \(L^2\ln (L)\), a logarithmically enhanced area law of this entropy for a bounded, piecewise Lipschitz region \(L\Lambda \subset {{\mathbb {R}}}^3\) as the scaling parameter L tends to infinity. This is in contrast to the two-dimensional case since particles can now move freely in the direction of the magnetic field, which causes the extra \(\ln (L)\) factor. The explicit expression for the coefficient of the leading order contains a surface integral similar to the Widom–Sobolev formula in the non-magnetic case. It differs, however, in the sense that the dependence on the boundary, \(\partial \Lambda \), is not solely on its area but on the “surface perpendicular to the direction of the magnetic field”. We utilize a two-term asymptotic expansion by Widom (up to an error term of order one) of certain traces of one-dimensional Wiener–Hopf operators with a discontinuous symbol. This leads to an improved error term of the order \(L^2\) of the relevant trace for piecewise \(\textsf{C}^{1,\alpha }\) smooth surfaces \(\partial \Lambda \).

Abstract Image

磁场中三维理想费米气体基态的纠缠熵
我们研究了在\({\mathbb {R}}^3\) 中受到垂直于平面的恒定磁场作用的非相互作用(无自旋)费米子基态的纠缠熵的渐近增长。至于没有磁场的情况,我们发现,对于一个有界的、片状的 Lipschitz 区域 (L\Lambda \subset {{mathbb{R}}^3\),随着缩放参数 L 趋于无穷大,该熵的对数增强面积定律的前导阶为 \(L^2\ln (L)\)。这与二维情况不同,因为粒子现在可以在磁场方向上自由移动,这就导致了额外的 \(\ln (L)\) 因子。前导阶系数的显式表达包含一个表面积分,类似于非磁性情况下的 Widom-Sobolev 公式。然而,它的不同之处在于对边界(\(partial \Lambda \))的依赖不仅仅是对其面积的依赖,而是对 "垂直于磁场方向的表面 "的依赖。我们利用维多姆(Widom)对具有不连续符号的一维维纳-霍普夫算子的某些迹线进行的两期渐近展开(直到一阶误差项)。这导致了对于片状(textsf{C}^{1,\alpha }\ )光滑表面(\partial \Lambda \)的相关迹线的阶数\(L^2\)的改进误差项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信