Quantum Elliptic Curve

{"title":"Quantum Elliptic Curve","authors":"","doi":"10.33140/atcp.06.03.08","DOIUrl":null,"url":null,"abstract":"The present paper summarizes the author’s work on Elliptic Curve and its Rational Points. We derive new Quantum Mechanical Equation from the Quantum Mechanics first principles. We then describe the Quantum Entanglement Mechanism, based on the link between the two Quantum Elliptic Curves author first derived in the original version of the present paper in October 2020. The two Quantum Elliptic Curves represent states of the two entangled particles forming an EPR-pair (aka Bell state). Also we present two methods of manipulation of state of an EPR-pair. Together they provide algorithm for the Quantum Teleportation.","PeriodicalId":329309,"journal":{"name":"Advances in Theoretical & Computational Physics","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical & Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/atcp.06.03.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper summarizes the author’s work on Elliptic Curve and its Rational Points. We derive new Quantum Mechanical Equation from the Quantum Mechanics first principles. We then describe the Quantum Entanglement Mechanism, based on the link between the two Quantum Elliptic Curves author first derived in the original version of the present paper in October 2020. The two Quantum Elliptic Curves represent states of the two entangled particles forming an EPR-pair (aka Bell state). Also we present two methods of manipulation of state of an EPR-pair. Together they provide algorithm for the Quantum Teleportation.
量子椭圆曲线
本文综述了作者在椭圆曲线及其有理点方面的研究工作。从量子力学第一原理推导出新的量子力学方程。然后,我们描述了量子纠缠机制,该机制基于作者在2020年10月在本文的原始版本中首先推导出的两条量子椭圆曲线之间的联系。两条量子椭圆曲线表示形成epr对的两个纠缠粒子的状态(又名贝尔态)。此外,我们还提出了两种操作epr对状态的方法。它们共同为量子隐形传态提供了算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信